Search for other papers by Søs Dragsbæk Larsen in
Google Scholar
PubMed
Department of Public Health, Environmental Medicine, University of Southern Denmark, Odense, Denmark
Search for other papers by Christine Dalgård in
Google Scholar
PubMed
Search for other papers by Mathilde Egelund Christensen in
Google Scholar
PubMed
Search for other papers by Sine Lykkedegn in
Google Scholar
PubMed
Department of Obstetrics and Gynecology, Herlev Hospital, Copenhagen, Denmark
Search for other papers by Louise Bjørkholt Andersen in
Google Scholar
PubMed
Department of Medical Endocrinology, Odense University Hospital, Odense, Denmark
Search for other papers by Marianne Andersen in
Google Scholar
PubMed
Search for other papers by Dorte Glintborg in
Google Scholar
PubMed
Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
Search for other papers by Henrik Thybo Christesen in
Google Scholar
PubMed
seen in females only ( 17 ), which indicates a possible sex-specific effect. Our objective was to investigate whether s-25OHD in cord blood and during pregnancy (median gestational age 12 and 29 weeks) was associated with offspring systolic and
Search for other papers by Britt J van Keulen in
Google Scholar
PubMed
Search for other papers by Conor V Dolan in
Google Scholar
PubMed
Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Search for other papers by Ruth Andrew in
Google Scholar
PubMed
Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by Hilleke Hulshoff Pol in
Google Scholar
PubMed
Search for other papers by Dorret I Boomsma in
Google Scholar
PubMed
Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
A to C between 9 and 12 years was higher in girls than in boys (0.282 vs 0.025). Sexual dimorphism in cortisol production and metabolism during pubertal development Table 4 displays the sex-specific means for cortisol metabolite excretion
Search for other papers by W N H Koek in
Google Scholar
PubMed
Search for other papers by N Campos-Obando in
Google Scholar
PubMed
Search for other papers by B C J van der Eerden in
Google Scholar
PubMed
Search for other papers by Y B de Rijke in
Google Scholar
PubMed
Search for other papers by M A Ikram in
Google Scholar
PubMed
Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
Search for other papers by A G Uitterlinden in
Google Scholar
PubMed
Search for other papers by J P T M van Leeuwen in
Google Scholar
PubMed
Search for other papers by M C Zillikens in
Google Scholar
PubMed
in women above 45 years were higher compared to women < 45 years of age. No sexual dimorphism was found in the younger age groups. Sex differences in serum phosphate appeared on average 10 years before sex differences in serum calcium were observed
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Maki Igarashi in
Google Scholar
PubMed
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Tadayuki Ayabe in
Google Scholar
PubMed
Search for other papers by Kiwako Yamamoto-Hanada in
Google Scholar
PubMed
Search for other papers by Keiko Matsubara in
Google Scholar
PubMed
Search for other papers by Hatoko Sasaki in
Google Scholar
PubMed
Search for other papers by Mayako Saito-Abe in
Google Scholar
PubMed
Search for other papers by Miori Sato in
Google Scholar
PubMed
Search for other papers by Nathan Mise in
Google Scholar
PubMed
Search for other papers by Akihiko Ikegami in
Google Scholar
PubMed
Search for other papers by Masayuki Shimono in
Google Scholar
PubMed
Search for other papers by Reiko Suga in
Google Scholar
PubMed
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Search for other papers by Shouichi Ohga in
Google Scholar
PubMed
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Search for other papers by Masafumi Sanefuji in
Google Scholar
PubMed
Search for other papers by Masako Oda in
Google Scholar
PubMed
Search for other papers by Hiroshi Mitsubuchi in
Google Scholar
PubMed
Search for other papers by Takehiro Michikawa in
Google Scholar
PubMed
Search for other papers by Shin Yamazaki in
Google Scholar
PubMed
Search for other papers by Shoji Nakayama in
Google Scholar
PubMed
Search for other papers by Yukihiro Ohya in
Google Scholar
PubMed
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Maki Fukami in
Google Scholar
PubMed
of age or later ( 1 , 4 , 5 , 6 ). Thus, sexual dimorphism in blood sex hormone levels is evident in children above 8 years of age. Furthermore, ultra-sensitive hormone assays using liquid chromatography-tandem mass spectrometry (LC-MS/MS) have
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Marie Lindhardt Ljubicic in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Margit Bistrup Fischer in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Emmie N Upners in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Alexander S Busch in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Katharina M Main in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anna-Maria Andersson in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Casper P Hagen in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
interest. Yet, the LH/FSH ratio and its sex-dimorphisms remain not fully described in patients. With newly published cutoff values for the LH/FSH ratio for the entire first year of life ( 3 ), it is now more feasible for a study to explore the marker
Search for other papers by Silvia Ciancia in
Google Scholar
PubMed
Search for other papers by Vanessa Dubois in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
(In this review, we use the term ‘sex’ to refer to biological aspects of male or female development, whereas we use the term ‘gender’ to refer to an individual’s self-reported sense of gender.) differences before puberty, skeletal sexual dimorphism
Molecular Reproductive Research Group, Department of Translational Medicine, Lund University, Malmö, Sweden
Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
Search for other papers by Christos Tsatsanis in
Google Scholar
PubMed
Reproductive Medicine Centre, Skåne University Hospital Malmö, Malmö, Sweden
Search for other papers by Angel Elenkov in
Google Scholar
PubMed
Search for other papers by Irene Leijonhufvud in
Google Scholar
PubMed
Search for other papers by Katerina Vaporidi in
Google Scholar
PubMed
Search for other papers by Åsa Tivesten in
Google Scholar
PubMed
Reproductive Medicine Centre, Skåne University Hospital Malmö, Malmö, Sweden
Search for other papers by Aleksander Giwercman in
Google Scholar
PubMed
Introduction Low-grade systemic inflammation is associated with multiple conditions including cardiovascular disease, metabolic disease and osteoporosis and is the result of sustained activation of immune cells. The contribution of sex and sex
Search for other papers by Rafaella Sales de Freitas in
Google Scholar
PubMed
Search for other papers by Thiago F A França in
Google Scholar
PubMed
Search for other papers by Sabine Pompeia in
Google Scholar
PubMed
dimorphism in the onset of puberty and incidence of idiopathic central precocious puberty in children: sex-specific kisspeptin as an integrator of puberty signals . Frontiers in Endocrinology 2012 3 149. ( https://doi.org/10.3389/fendo.2012.00149 ) 20
Search for other papers by Myrian Velasco in
Google Scholar
PubMed
Search for other papers by Rosa Isela Ortiz-Huidobro in
Google Scholar
PubMed
Search for other papers by Carlos Larqué in
Google Scholar
PubMed
Search for other papers by Yuriko Itzel Sánchez-Zamora in
Google Scholar
PubMed
Search for other papers by José Romo-Yáñez in
Google Scholar
PubMed
Search for other papers by Marcia Hiriart in
Google Scholar
PubMed
Introduction Morphological and physiological differences associated with sex are common in animals ( 1 ), many of them depend on gonadal hormones and sex chromosomes ( 2 ). Men and women differ in metabolism and energy balance ( 3 ). However
Search for other papers by Robert A Hart in
Google Scholar
PubMed
Search for other papers by Robin C Dobos in
Google Scholar
PubMed
Search for other papers by Linda L Agnew in
Google Scholar
PubMed
Search for other papers by Neil A Smart in
Google Scholar
PubMed
Search for other papers by James R McFarlane in
Google Scholar
PubMed
and digestive tract, and a high concentration was found in the lungs. This is similar to findings in female mice, but some major differences seem to indicate that profound dimorphism of distribution exists between the sexes. Notably, almost twice the