Search for other papers by P R van Dijk in
Google Scholar
PubMed
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Search for other papers by S J J Logtenberg in
Google Scholar
PubMed
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Search for other papers by K H Groenier in
Google Scholar
PubMed
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Search for other papers by N Kleefstra in
Google Scholar
PubMed
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Search for other papers by H J G Bilo in
Google Scholar
PubMed
Diabetes Centre, Departments of Internal Medicine, General Practice, Langerhans Medical Research Group, Department of Internal Medicine, Division of Cell Biology, Faculty of Health Sciences, Isala Clinics, PO Box 10400, 8000 G.K. Zwolle, The Netherlands
Search for other papers by H J Arnqvist in
Google Scholar
PubMed
regulation (1, 2, 3) . In plasma, IGF1 is bound to IGF-binding proteins (IGFBPs), among which IGFBP3 binds to ∼80% of the total amount of IGF1 present in the circulation. It is only the free fraction of IGF1, comprising <1% of the circulating IGF1, that is
Search for other papers by Anna Kistner in
Google Scholar
PubMed
Search for other papers by Mireille Vanpée in
Google Scholar
PubMed
Search for other papers by Kerstin Hall in
Google Scholar
PubMed
are conflicting concerning leptin levels (5, 17, 18, 19) but elevated levels have been observed in prepubertal SGA children with catch-up growth (19) . IGF-binding protein-1 (IGFBP1) modulates the effect of IGF1 at target tissue. IGFBP1 levels are
Departments of Endocrinology, Molecular Medicine and Surgery, Metabolism and Diabetes
Search for other papers by Lisa Arnetz in
Google Scholar
PubMed
Departments of Endocrinology, Molecular Medicine and Surgery, Metabolism and Diabetes
Search for other papers by Neda Rajamand Ekberg in
Google Scholar
PubMed
Departments of Endocrinology, Molecular Medicine and Surgery, Metabolism and Diabetes
Search for other papers by Kerstin Brismar in
Google Scholar
PubMed
Departments of Endocrinology, Molecular Medicine and Surgery, Metabolism and Diabetes
Search for other papers by Michael Alvarsson in
Google Scholar
PubMed
) . IGF1 levels may be low in subjects with T2D (14, 15) . IGF binding protein 1 (IGFBP1) binds IGF1 and functions as a transport protein, as well as regulating IGF1 bioavailability (16) . Insulin inhibits IGFBP1 production via reduced gene transcription
Search for other papers by Mieke Van Hemelrijck in
Google Scholar
PubMed
Search for other papers by Thurkaa Shanmugalingam in
Google Scholar
PubMed
Search for other papers by Cecilia Bosco in
Google Scholar
PubMed
Search for other papers by Wahyu Wulaningsih in
Google Scholar
PubMed
Search for other papers by Sabine Rohrmann in
Google Scholar
PubMed
, proliferation, and apoptosis. IGF1 is mainly carried in the blood within a ternary complex with IGF-binding protein 3 (IGFBP3). This complex stabilises IGF1 such that its clearance is reduced and its supply to target cells is prolonged (5, 6) . Different
Search for other papers by Mette Faurholdt Gude in
Google Scholar
PubMed
Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark
Search for other papers by Rikke Hjortebjerg in
Google Scholar
PubMed
Search for other papers by Mette Bjerre in
Google Scholar
PubMed
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Morten Haaning Charles in
Google Scholar
PubMed
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Daniel R Witte in
Google Scholar
PubMed
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Annelli Sandbæk in
Google Scholar
PubMed
Search for other papers by Jan Frystyk in
Google Scholar
PubMed
likely related to its ability to increase insulin-like growth factor-1 (IGF1) action. PAPP-A activates IGF1 through proteolytic cleavage of IGF-binding proteins (IGFBP) -2, -4 and -5, which provides IGFBP fragments with low ligand affinity. By this
Search for other papers by Ram P Narayanan in
Google Scholar
PubMed
Search for other papers by Bo Fu in
Google Scholar
PubMed
Search for other papers by Adrian H Heald in
Google Scholar
PubMed
Search for other papers by Kirk W Siddals in
Google Scholar
PubMed
Search for other papers by Robert L Oliver in
Google Scholar
PubMed
Search for other papers by Julie E Hudson in
Google Scholar
PubMed
Search for other papers by Antony Payton in
Google Scholar
PubMed
Search for other papers by Simon G Anderson in
Google Scholar
PubMed
Search for other papers by Anne White in
Google Scholar
PubMed
Vascular Research Group, School of Community Based Medicine, Centre for Integrated Genomic Medical Research, Cardiovascular Research Group, Endocrinology and Diabetes, Salford R&D, Department of Endocrinology and Diabetes, Faculty of Medical, Human and Life Sciences, The University of Manchester, Manchester M13 9PT, UK
Search for other papers by William E R Ollier in
Google Scholar
PubMed
Vascular Research Group, School of Community Based Medicine, Centre for Integrated Genomic Medical Research, Cardiovascular Research Group, Endocrinology and Diabetes, Salford R&D, Department of Endocrinology and Diabetes, Faculty of Medical, Human and Life Sciences, The University of Manchester, Manchester M13 9PT, UK
Search for other papers by J Martin Gibson in
Google Scholar
PubMed
complications of diabetes. The IGF system comprises the two primary ligands, namely IGF1 and IGF2, six high-affinity fully characterised IGF-binding proteins (IGFBP1–IGFBP6) and the IGF receptors. IGF1 and IGF2 are anabolic peptides with extensive structural and
Department of Child and Adolescent Medicine, Section of Pediatric Cardiology, University Hospital Jena, Am Klinikum, Jena, Germany
Search for other papers by Alexandra Kiess in
Google Scholar
PubMed
Search for other papers by Jessica Green in
Google Scholar
PubMed
Search for other papers by Anja Willenberg in
Google Scholar
PubMed
Search for other papers by Uta Ceglarek in
Google Scholar
PubMed
Search for other papers by Ingo Dähnert in
Google Scholar
PubMed
Department of Women and Child Health, Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse, Leipzig, Germany
Search for other papers by Wieland Kiess in
Google Scholar
PubMed
Department of Women and Child Health, Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse, Leipzig, Germany
Search for other papers by Mandy Vogel in
Google Scholar
PubMed
childhood development remains not well understood. Recent studies have investigated influences of growth hormone factors on cardiac markers in different adult cohorts and small pediatric patient groups. For example, positive correlations of IGF-BP1 and IGF-BP
Department of Nutritional Sciences, University of Toronto, Toronto, Canada
Search for other papers by Monika Bilic in
Google Scholar
PubMed
Department of Nutritional Sciences, University of Toronto, Toronto, Canada
Search for other papers by Huma Qamar in
Google Scholar
PubMed
Search for other papers by Akpevwe Onoyovwi in
Google Scholar
PubMed
Search for other papers by Jill Korsiak in
Google Scholar
PubMed
Search for other papers by Eszter Papp in
Google Scholar
PubMed
Search for other papers by Abdullah Al Mahmud in
Google Scholar
PubMed
Molecular and Medical Genetics, University of Toronto, Toronto, Canada
Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Canada
Search for other papers by Rosanna Weksberg in
Google Scholar
PubMed
Search for other papers by Alison D Gernand in
Google Scholar
PubMed
Search for other papers by Jennifer Harrington in
Google Scholar
PubMed
Department of Nutritional Sciences, University of Toronto, Toronto, Canada
Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Canada
Search for other papers by Daniel E Roth in
Google Scholar
PubMed
serum IGFs exist bound to one of six binding proteins that together regulate IGF function ( 10 ). The primary binding protein for IGF-I during fetal development is IGF-binding protein 1 (IGFBP-1), which inhibits IGF-I function via its sequestration in
Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China
Search for other papers by Xu Chen in
Google Scholar
PubMed
Search for other papers by Yi Tang in
Google Scholar
PubMed
Search for other papers by Shen Chen in
Google Scholar
PubMed
Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, People’s Republic of China
Search for other papers by Wenhua Ling in
Google Scholar
PubMed
Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, People’s Republic of China
Search for other papers by Qing Wang in
Google Scholar
PubMed
important role in the pathophysiological process. In the analysis of PPI network by the MCC method, the genes with top 10 MCC value were MYC, ANXA2, GDF15, AGTR1, NAMPT, LEPR, IGFBP-2, IL1RN, MMP7, and APLNR. The hub genes relationship in the STRING database
Search for other papers by R C S van Adrichem in
Google Scholar
PubMed
Search for other papers by L J Hofland in
Google Scholar
PubMed
Search for other papers by R A Feelders in
Google Scholar
PubMed
Search for other papers by M C De Martino in
Google Scholar
PubMed
Search for other papers by P M van Koetsveld in
Google Scholar
PubMed
Search for other papers by C H J van Eijck in
Google Scholar
PubMed
Search for other papers by R R de Krijger in
Google Scholar
PubMed
Search for other papers by D M Sprij-Mooij in
Google Scholar
PubMed
Search for other papers by J A M J L Janssen in
Google Scholar
PubMed
Search for other papers by W W de Herder in
Google Scholar
PubMed
-A and IR-B), and six IGF-binding proteins (IGFBPs). Upon binding to the IGF1R and IR-A, IGFs predominantly generate mitogenic effects. Binding to IR-B predominantly exerts metabolic effects (3, 4) . Almost all IGFs are bound to one of the six high