Search for other papers by Sarmistha Banerjee in
Google Scholar
PubMed
Search for other papers by Allison M Hayes in
Google Scholar
PubMed
Search for other papers by Bernard H Shapiro in
Google Scholar
PubMed
Introduction Sexual dimorphisms of some dozen or more hormone- and drug-metabolizing constituent cytochromes P450 (CYPs) observed in rats, humans, and many other species examined ( 1 ) are defined by two characteristics. (i) Following puberty
Search for other papers by Piera Rizzolo in
Google Scholar
PubMed
Search for other papers by Valentina Silvestri in
Google Scholar
PubMed
Search for other papers by Virginia Valentini in
Google Scholar
PubMed
Search for other papers by Veronica Zelli in
Google Scholar
PubMed
Search for other papers by Agostino Bucalo in
Google Scholar
PubMed
Search for other papers by Ines Zanna in
Google Scholar
PubMed
Search for other papers by Simonetta Bianchi in
Google Scholar
PubMed
Search for other papers by Maria Grazia Tibiletti in
Google Scholar
PubMed
Search for other papers by Antonio Russo in
Google Scholar
PubMed
Search for other papers by Liliana Varesco in
Google Scholar
PubMed
Search for other papers by Gianluca Tedaldi in
Google Scholar
PubMed
Search for other papers by Bernardo Bonanni in
Google Scholar
PubMed
Search for other papers by Jacopo Azzollini in
Google Scholar
PubMed
Search for other papers by Siranoush Manoukian in
Google Scholar
PubMed
Search for other papers by Anna Coppa in
Google Scholar
PubMed
Search for other papers by Giuseppe Giannini in
Google Scholar
PubMed
Search for other papers by Laura Cortesi in
Google Scholar
PubMed
Search for other papers by Alessandra Viel in
Google Scholar
PubMed
Search for other papers by Marco Montagna in
Google Scholar
PubMed
Search for other papers by Paolo Peterlongo in
Google Scholar
PubMed
Search for other papers by Paolo Radice in
Google Scholar
PubMed
Search for other papers by Domenico Palli in
Google Scholar
PubMed
Search for other papers by Laura Ottini in
Google Scholar
PubMed
in genes involved in estrogen biosynthesis and metabolism pathways, such as Cytochrome P450 family 17 subfamily A member 1 ( CYP17A1 ) and Cytochrome P450 family 1 subfamily B member 1 ( CYP1B1 ), may cause an increased risk of hormone-related cancers
Search for other papers by Marianna Viukari in
Google Scholar
PubMed
Search for other papers by Helena Leijon in
Google Scholar
PubMed
Search for other papers by Tiina Vesterinen in
Google Scholar
PubMed
Search for other papers by Sanni Söderlund in
Google Scholar
PubMed
Search for other papers by Päivi Hämäläinen in
Google Scholar
PubMed
Search for other papers by Iina Yliaska in
Google Scholar
PubMed
Search for other papers by Päivi Rautiainen in
Google Scholar
PubMed
Search for other papers by Reeta Rintamäki in
Google Scholar
PubMed
Search for other papers by Minna Soinio in
Google Scholar
PubMed
Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
Search for other papers by Ilkka Pörsti in
Google Scholar
PubMed
Search for other papers by Pasi I Nevalainen in
Google Scholar
PubMed
Search for other papers by Niina Matikainen in
Google Scholar
PubMed
consensus recommends that the histopathological diagnosis of PA should be based on morphology using H&E staining plus immunohistochemistry using CYP11B2 staining to verify the presence of autonomous aldosterone secretion ( 8 , 9 ). HISTALDO unified the
Search for other papers by Xingyan Liu in
Google Scholar
PubMed
Search for other papers by Mei Xu in
Google Scholar
PubMed
Search for other papers by Min Qian in
Google Scholar
PubMed
Search for other papers by Lindong Yang in
Google Scholar
PubMed
augmented with which compared normal women by isolation and cultivation of theca cells ( 8 , 9 ). The excess biosynthesis of androgen in PCOS was attributed to the enhanced expression of steroid-17-α-hydroxylase/17,20 lyase (CYP17A1 gene) in theca cells
Regenerative Medicine Institute at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
Search for other papers by Tomás P Griffin in
Google Scholar
PubMed
Search for other papers by Caroline M Joyce in
Google Scholar
PubMed
Search for other papers by Sumaya Alkanderi in
Google Scholar
PubMed
Search for other papers by Liam M Blake in
Google Scholar
PubMed
Search for other papers by Derek T O’Keeffe in
Google Scholar
PubMed
Search for other papers by Delia Bogdanet in
Google Scholar
PubMed
Department of Clinical Biochemistry, SUHCG, GUH, Galway, Ireland
Search for other papers by Md Nahidul Islam in
Google Scholar
PubMed
Lambe Institute for Translational Research, School of Medicine, NUIG, Galway, Ireland
Search for other papers by Michael C Dennedy in
Google Scholar
PubMed
Search for other papers by John E Gillan in
Google Scholar
PubMed
Search for other papers by John J Morrison in
Google Scholar
PubMed
Regenerative Medicine Institute at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
Search for other papers by Timothy O’Brien in
Google Scholar
PubMed
Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
Search for other papers by John A Sayer in
Google Scholar
PubMed
Search for other papers by Marcia Bell in
Google Scholar
PubMed
Search for other papers by Paula M O’Shea in
Google Scholar
PubMed
series of reactions in the liver and kidneys to generate the active form ( 5 ). In the liver, vitamin D3 is hydroxylated to form the prehormone 25-hydroxycholecalciferol D (25(OH)D 3 ) catalysed primarily by CYP2R1 with CYP27A1 possibly contributing
Search for other papers by Ingeborg Brønstad in
Google Scholar
PubMed
Search for other papers by Lars Breivik in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, Division of Medicine, University of Bergen, 5021 Bergen, Norway
Search for other papers by Paal Methlie in
Google Scholar
PubMed
Search for other papers by Anette S B Wolff in
Google Scholar
PubMed
Search for other papers by Eirik Bratland in
Google Scholar
PubMed
Search for other papers by Ingrid Nermoen in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, Division of Medicine, University of Bergen, 5021 Bergen, Norway
Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, Division of Medicine, University of Bergen, 5021 Bergen, Norway
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Introduction The CYP21A2 gene encodes the enzyme steroid 21-hydroxylase (21OH), which is essential for steroid synthesis in the adrenal cortex. Mutations in CYP21A2 are the main cause of the autosomal recessive disorder congenital adrenal
Search for other papers by Sarah Bakhamis in
Google Scholar
PubMed
Search for other papers by Faiqa Imtiaz in
Google Scholar
PubMed
Search for other papers by Khushnooda Ramzan in
Google Scholar
PubMed
Search for other papers by Edward De Vol in
Google Scholar
PubMed
Search for other papers by Osamah Al-Sagheir in
Google Scholar
PubMed
Search for other papers by Abdulrahman Al-Rajhi in
Google Scholar
PubMed
Search for other papers by Abdullah Alashwal in
Google Scholar
PubMed
Search for other papers by Bassam Bin Abbas in
Google Scholar
PubMed
Search for other papers by Nadia Sakati in
Google Scholar
PubMed
Search for other papers by Afaf Al-Sagheir in
Google Scholar
PubMed
). A mutation in the CYP27B1 gene, which catalyzes the 1α-hydroxylase enzyme, can prompt the inability to synthesize the active form of vitamin D (1,25-[OH]2 D3), which results in vitamin D-dependent rickets type 1A (VDDR1A, MIM264700). Mutation in
Search for other papers by Qiuli Liu in
Google Scholar
PubMed
Search for other papers by Lin-ang Wang in
Google Scholar
PubMed
Search for other papers by Jian Su in
Google Scholar
PubMed
Search for other papers by Dali Tong in
Google Scholar
PubMed
Search for other papers by Weihua Lan in
Google Scholar
PubMed
Search for other papers by Luofu Wang in
Google Scholar
PubMed
Search for other papers by Gaolei Liu in
Google Scholar
PubMed
Search for other papers by Jun Zhang in
Google Scholar
PubMed
AmCare Genomics Lab, Guangzhou, People’s Republic of China
Search for other papers by Victor Wei Zhang in
Google Scholar
PubMed
Search for other papers by Dianzheng Zhang in
Google Scholar
PubMed
Search for other papers by Rongrong Chen in
Google Scholar
PubMed
Search for other papers by Qingyi Zhu in
Google Scholar
PubMed
Search for other papers by Jun Jiang in
Google Scholar
PubMed
. Six cytochrome P450 (CYP) enzymes including CYP11A1, CYP11B1, CYP11B2, CYP17A1, CYP19A1 and CYP21A2 are involved in the synthesis of steroid hormones. Although deficiencies of any of these enzymes can result in CAH ( 3 ), CYP21A2 deficiency (21OHD
Inserm U1016-CNRS UMR8104, Paris, France
Hormonology Department, Cochin Hospital, Paris, France
Search for other papers by Fidéline Bonnet-Serrano in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Radiology Department, Cochin Hospital, Paris, France
Search for other papers by Maxime Barat in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France
Search for other papers by Anna Vaczlavik in
Google Scholar
PubMed
Search for other papers by Anne Jouinot in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France
Search for other papers by Lucas Bouys in
Google Scholar
PubMed
Hormonology Department, Cochin Hospital, Paris, France
INSERM, Physiopathologie et Pharmacotoxicologie Placentaire Humaine : Microbiote Pré & Post natal, Paris, France
Search for other papers by Christelle Laguillier-Morizot in
Google Scholar
PubMed
Search for other papers by Corinne Zientek in
Google Scholar
PubMed
Search for other papers by Catherine Simonneau in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Diabetology Department, Cochin Hospital, Paris, France
Search for other papers by Etienne Larger in
Google Scholar
PubMed
Search for other papers by Laurence Guignat in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France
Search for other papers by Lionel Groussin in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France
Search for other papers by Guillaume Assié in
Google Scholar
PubMed
Hormonology Department, Cochin Hospital, Paris, France
INSERM, Physiopathologie et Pharmacotoxicologie Placentaire Humaine : Microbiote Pré & Post natal, Paris, France
Search for other papers by Jean Guibourdenche in
Google Scholar
PubMed
UR 7537 BioSTM, Paris, France
Search for other papers by Ioannis Nicolis in
Google Scholar
PubMed
Search for other papers by Marie-Claude Menet in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France
Search for other papers by Jérôme Bertherat in
Google Scholar
PubMed
precursor, located upstream of the deficient enzyme. In this context, CYP21A2 enzyme is the most frequently affected in patients with congenital adrenal hyperplasia (CAH), leading to an excessive response of 17-hydroxyprogesterone (17OHP) to ACTH1-24. In
Division of Exercise Science and Sport Medicine, Department of Human Biology, University of Cape Town, 3 Floor Sports Science Institute of South Africa Cape Town, South Africa
Search for other papers by Julia H Goedecke in
Google Scholar
PubMed
Search for other papers by Mehreen Tootla in
Google Scholar
PubMed
Search for other papers by Dheshnie Keswell in
Google Scholar
PubMed
comprises both visceral (VAT) and subcutaneous adipose tissue (SAT), is commonly associated with increased cardiometabolic risk, whereas lower-body gluteo-femoral fat accumulation may be protective ( 4 , 5 ). Within adipose tissue, aromatase ( CYP19A1