Search Results

You are looking at 1 - 1 of 1 items for :

  • "ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry" x
Clear All
Open access

Jia Li, Yan Zhao, Caoxin Huang, Zheng Chen, Xiulin Shi, Long Li, Zhong Chen and Xuejun Li

Objective

Exercise benefits people with nonalcoholic fatty liver disease (NAFLD). The aim of this study was to identify a panel of biomarkers and to provide the possible mechanism for the effect of exercise on NAFLD patients via an untargeted mass spectrometry-based serum metabolomics study.

Methods

NAFLD patients were classified randomly into a control group (n = 74) and a 6-month vigorous exercise (n = 68) group. Differences in serum metabolic profiles were analyzed using untargeted ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technology. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to validate the differences between these two groups, and altered metabolites were obtained by ANOVA (fold change >2, P < 0.05) and identified with the online database Metlin and an in-house database.

Results

Metabolic profiling and multiple statistical analyses of the serum samples indicated significant differences between the NAFLD patients in the control and the 6-month vigorous exercise groups. Finally, 36 metabolites were identified between the control vs exercise groups. These metabolites were mainly associated with glycerophospholipid- and sphingolipid-related pathways.

Conclusion

Our study demonstrates that glycerophospholipid and sphingolipid alterations may contribute to the mechanism underlying the effect of exercise on NAFLD patients. A LC-MS-based metabolomics approach has a potential value for screening exercise-induced biomarkers.