Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Maki Igarashi in
Google Scholar
PubMed
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Tadayuki Ayabe in
Google Scholar
PubMed
Search for other papers by Kiwako Yamamoto-Hanada in
Google Scholar
PubMed
Search for other papers by Keiko Matsubara in
Google Scholar
PubMed
Search for other papers by Hatoko Sasaki in
Google Scholar
PubMed
Search for other papers by Mayako Saito-Abe in
Google Scholar
PubMed
Search for other papers by Miori Sato in
Google Scholar
PubMed
Search for other papers by Nathan Mise in
Google Scholar
PubMed
Search for other papers by Akihiko Ikegami in
Google Scholar
PubMed
Search for other papers by Masayuki Shimono in
Google Scholar
PubMed
Search for other papers by Reiko Suga in
Google Scholar
PubMed
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Search for other papers by Shouichi Ohga in
Google Scholar
PubMed
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Search for other papers by Masafumi Sanefuji in
Google Scholar
PubMed
Search for other papers by Masako Oda in
Google Scholar
PubMed
Search for other papers by Hiroshi Mitsubuchi in
Google Scholar
PubMed
Search for other papers by Takehiro Michikawa in
Google Scholar
PubMed
Search for other papers by Shin Yamazaki in
Google Scholar
PubMed
Search for other papers by Shoji Nakayama in
Google Scholar
PubMed
Search for other papers by Yukihiro Ohya in
Google Scholar
PubMed
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Maki Fukami in
Google Scholar
PubMed
Objective
Ultra-sensitive hormone assays have detected slight sex differences in blood estradiol (E2) levels in young children before adrenarche. However, the origin of circulating E2 in these individuals remains unknown. This study aimed to clarify how E2 is produced in young girls before adrenarche.
Design
This is a satellite project of the Japan Environment and Children’s Study organized by the National Institute for Environmental Studies.
Methods
We collected blood samples from healthy 6-year-old Japanese children (79 boys and 71 girls). Hormone measurements and data analysis were performed in the National Institute for Environmental Studies and the Medical Support Center of the Japan Environment and Children’s Study, respectively.
Results
E2 and follicle stimulating hormone (FSH) levels were significantly higher in girls than in boys, while dehydroepiandrosterone sulfate (DHEA-S) and testosterone levels were comparable between the two groups. Girls showed significantly higher E2/testosterone ratios than boys. In children of both sexes, a correlation was observed between E2 and testosterone levels and between testosterone and DHEA-S levels. Moreover, E2 levels were correlated with FSH levels only in girls.
Conclusions
The results indicate that in 6-year-old girls, circulating E2 is produced primarily in the ovary from adrenal steroids through FSH-induced aromatase upregulation. This study provides evidence that female-dominant E2 production starts several months or years before adrenarche. The biological significance of E2 biosynthesis in these young children needs to be clarified in future studies.
Search for other papers by Ayse Nurcan Cebeci in
Google Scholar
PubMed
Search for other papers by Vera Schempp in
Google Scholar
PubMed
Search for other papers by Katharina Förtsch in
Google Scholar
PubMed
Search for other papers by Bettina Gohlke in
Google Scholar
PubMed
Search for other papers by Michaela Marx in
Google Scholar
PubMed
Search for other papers by Helmuth-Guenther Dörr in
Google Scholar
PubMed
Search for other papers by Joachim Woelfle in
Google Scholar
PubMed
While subclinical or overt hypothyroidism are common in Down syndrome (DS); Graves’ disease (GD) is rare (ranges 0.6–3%). We aimed to evaluate the clinical features, course, and treatment of GD in children with DS and compare them with those without DS. Among 161 children with GD, 13 (8 female, 5 male) had DS (8%). Data were collected retrospectively from patients’ medical records. The mean age at diagnosis was 10.6 ± 4.5 years, with a female-to-male ratio 1.6:1. The main symptoms were weight loss (n = 6), increased irritability (n = 3), and increased sweating (n = 3). None had orbitopathy. Seven of 11 patients with a thyroid ultrasound at diagnosis had a goitre. On admission, all had thyroid-stimulating hormone (TSH) <0.01 mU/L (normal range (NR): 0.51–4.30), free triiodothyronine, free thyroxine (mean ± s.d .), and thyrotrophin receptor antibodies (median, range) were 22.2 ± 10.2 pmol/L (NR: 3.5–8.1), 50.2 ± 18.7 pmol/L (NR 12.6–20.9), and 17.0 (2.89–159.0) U/L (NR <1), respectively. Patients were treated either with methimazole (n = 10) or carbimazole (n = 3), a dose of 0.54 ± 0.36 mg/kg/day. The treatment was ‘block and replace’ in ten patients and ‘dose titration’ in three patients, with a mean duration of 43.4 ± 11.0 months. Of 13 patients, four are still receiving primary treatment, three are in remission, one patient had two medically treated recurrences, three underwent surgery without complications, and two patients were lost to follow-up. Our data show that the clinical course of GD in patients with DS was similar to those without DS and suggest that a prolonged medical therapy should be the preferred option.
Search for other papers by Bruno Donadille in
Google Scholar
PubMed
Search for other papers by Muriel Houang in
Google Scholar
PubMed
Université Pierre et Marie Curie, Sorbonne Université, Paris, France
Search for other papers by Irène Netchine in
Google Scholar
PubMed
INSERM UMR_S933, Paris, France
Search for other papers by Jean-Pierre Siffroi in
Google Scholar
PubMed
Université Pierre et Marie Curie, Sorbonne Université, Paris, France
INSERM UMR_S933, Paris, France
Search for other papers by Sophie Christin-Maitre in
Google Scholar
PubMed
Human 3 beta-hydroxysteroid dehydrogenase deficiency (3b-HSD) is a very rare form of congenital adrenal hyperplasia resulting from HSD3B2 gene mutations. The estimated prevalence is less than 1/1,000,000 at birth. It leads to steroidogenesis impairment in both adrenals and gonads. Few data are available concerning adult testicular function in such patients. We had the opportunity to study gonadal axis and testicular function in a 46,XY adult patient, carrying a HSD3B2 mutation. He presented at birth a neonatal salt-wasting syndrome. He had a micropenis, a perineal hypospadias and two intrascrotal testes. HSD3B2 gene sequencing revealed a 687del27 homozygous mutation. The patient achieved normal puberty at the age of 15 years. Transition from the paediatric department occurred at the age of 19 years. His hormonal profile under hydrocortisone and fludrocortisone treatments revealed normal serum levels of 17OH-pregnenolone, as well as SDHEA, ACTH, total testosterone, inhibin B and AMH. Pelvic ultrasound identified two scrotal testes of 21 mL each, without any testicular adrenal rest tumours. His adult spermatic characteristics were normal, according to WHO 2010 criteria, with a sperm concentration of 57.6 million/mL (N > 15), 21% of typical forms (N > 4%). Sperm vitality was subnormal (41%; N > 58%). This patient, in contrast to previous reports, presents subnormal sperm parameters and therefore potential male fertility in a 24-years-old patient with severe 3b-HSD deficiency. This case should improve counselling about fertility of male patients carrying HSD3B2 mutation.
Search for other papers by R Perchard in
Google Scholar
PubMed
Search for other papers by L Magee in
Google Scholar
PubMed
Search for other papers by A Whatmore in
Google Scholar
PubMed
Search for other papers by F Ivison in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester, UK
Search for other papers by P Murray in
Google Scholar
PubMed
Search for other papers by A Stevens in
Google Scholar
PubMed
Search for other papers by M Z Mughal in
Google Scholar
PubMed
Search for other papers by S Ehtisham in
Google Scholar
PubMed
Search for other papers by J Campbell in
Google Scholar
PubMed
Search for other papers by S Ainsworth in
Google Scholar
PubMed
Search for other papers by M Marshall in
Google Scholar
PubMed
Search for other papers by M Bone in
Google Scholar
PubMed
Search for other papers by I Doughty in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Central Manchester Foundation Hospitals NHS Trust, Manchester, UK
Search for other papers by P E Clayton in
Google Scholar
PubMed
Background
Higher 25(OH)D3 levels are associated with lower HbA1c, but there are limited UK interventional trials assessing the effect of cholecalciferol on HbA1c.
Aims
(1) To assess the baseline 25(OH)D3 status in a Manchester cohort of children with type 1 diabetes (T1D). (2) To determine the effect of cholecalciferol administration on HbA1c.
Methods
Children with T1D attending routine clinic appointments over three months in late winter/early spring had blood samples taken with consent. Participants with a 25(OH)D3 level <50 nmol/L were treated with a one-off cholecalciferol dose of 100,000 (2–10 years) or 160,000 (>10 years) units. HbA1c levels before and after treatment were recorded.
Results
Vitamin D levels were obtained from 51 children. 35 were Caucasian, 11 South Asian and 5 from other ethnic groups. 42 were vitamin D deficient, but 2 were excluded from the analysis. All South Asian children were vitamin D deficient, with mean 25(OH)D3 of 28 nmol/L. In Caucasians, there was a negative relationship between baseline 25(OH)D3 level and HbA1c (r = −0.484, P < 0.01). In treated participants, there was no significant difference in mean HbA1c at 3 months (t = 1.010, P = 0.328) or at 1 year (t = −1.173, P = 0.248) before and after treatment. One-way ANCOVA, controlling for age, gender, ethnicity, BMI and diabetes duration showed no difference in Δ HbA1c level.
Conclusion
We report important findings at baseline, but in children treated with a stat dose of cholecalciferol, there was no effect on HbA1c. Further studies with larger sample sizes and using maintenance therapy are required.
Search for other papers by Felix Reschke in
Google Scholar
PubMed
Search for other papers by Torben Biester in
Google Scholar
PubMed
Search for other papers by Thekla von dem Berge in
Google Scholar
PubMed
Search for other papers by Dagmar Jamiolkowski in
Google Scholar
PubMed
Search for other papers by Laura Hasse in
Google Scholar
PubMed
Search for other papers by Francesca Dassie in
Google Scholar
PubMed
Search for other papers by Pietro Maffei in
Google Scholar
PubMed
Search for other papers by Katharina Klee in
Google Scholar
PubMed
Search for other papers by Olga Kordonouri in
Google Scholar
PubMed
Search for other papers by Hagen Ott in
Google Scholar
PubMed
Search for other papers by Thomas Danne in
Google Scholar
PubMed
-ERN is supported by the European Societies of Adult and Paediatric Endocrinology. It brings together the expertise of 71 centres from 19 countries in the field of rare endocrine diseases ( https://endo-ern.eu ). This review aims to inform about possible
Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
Search for other papers by M Guftar Shaikh in
Google Scholar
PubMed
Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
Search for other papers by Timothy G Barrett in
Google Scholar
PubMed
Search for other papers by Nicola Bridges in
Google Scholar
PubMed
Search for other papers by Robin Chung in
Google Scholar
PubMed
Centre for Endocrinology, William Harvey Research Institute, Barts and The London Medical School, Queen Mary University of London, London, UK
Search for other papers by Evelien F Gevers in
Google Scholar
PubMed
Department of Endocrinology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
Search for other papers by Anthony P Goldstone in
Google Scholar
PubMed
Search for other papers by Anthony Holland in
Google Scholar
PubMed
Search for other papers by Shankar Kanumakala in
Google Scholar
PubMed
Search for other papers by Ruth Krone in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Makarios Children's Hospital, Nicosia, Cyprus
Search for other papers by Andreas Kyriakou in
Google Scholar
PubMed
Sussex Community NHS Trust, Brighton, UK
Search for other papers by E Anne Livesey in
Google Scholar
PubMed
Developmental Endocrinology Research Group, University of Glasgow, Glasgow, UK
Search for other papers by Angela K Lucas-Herald in
Google Scholar
PubMed
Search for other papers by Christina Meade in
Google Scholar
PubMed
Search for other papers by Susan Passmore in
Google Scholar
PubMed
The University of Dublin, Trinity College Dublin, Dublin, Republic of Ireland
Search for other papers by Edna Roche in
Google Scholar
PubMed
Search for other papers by Chris Smith in
Google Scholar
PubMed
Search for other papers by Sarita Soni in
Google Scholar
PubMed
, usually every 6 months, similar to British Society for Paediatric Endocrinology and Diabetes (BSPED) guidelines ( 121 ). Where transdermal testosterone is not available, low doses of injectable depot testosterone can be considered. When there is pubertal
Search for other papers by Violeta Iotova in
Google Scholar
PubMed
Search for other papers by Camilla Schalin-Jäntti in
Google Scholar
PubMed
Search for other papers by Charlotte Van Beuzekom in
Google Scholar
PubMed
Search for other papers by Petra Bruegmann in
Google Scholar
PubMed
Search for other papers by Manuela Broesamle in
Google Scholar
PubMed
Search for other papers by Olaf Hiort in
Google Scholar
PubMed
Search for other papers by Alberto M Pereira in
Google Scholar
PubMed
ready by early 2019 and included endorsement of links to the e-learning resources of both learned societies: the European Society of Endocrinology’s e-learning platform and European Society for Paediatric Endocrinology’s e-learning portal ( https
Search for other papers by Kirsten Davidse in
Google Scholar
PubMed
Search for other papers by Anneloes van Staa in
Google Scholar
PubMed
Search for other papers by Wanda Geilvoet in
Google Scholar
PubMed
Search for other papers by Judith P van Eck in
Google Scholar
PubMed
Search for other papers by Karlijn Pellikaan in
Google Scholar
PubMed
Search for other papers by Janneke Baan in
Google Scholar
PubMed
Academic Centre for Growth, Erasmus University Medical Centre, Rotterdam, the Netherlands
Dutch Growth Research Foundation, Rotterdam, the Netherlands
Search for other papers by Anita C S Hokken-Koelega in
Google Scholar
PubMed
Search for other papers by Erica L T van den Akker in
Google Scholar
PubMed
Diabeter, National Diabetes Care and Research Centre, Rotterdam, the Netherlands
Search for other papers by Theo Sas in
Google Scholar
PubMed
Department of Paediatrics, Leiden University Medical Centre, Leiden, the Netherlands
Search for other papers by Sabine E Hannema in
Google Scholar
PubMed
Search for other papers by Aart Jan van der Lely in
Google Scholar
PubMed
Academic Centre for Growth, Erasmus University Medical Centre, Rotterdam, the Netherlands
Search for other papers by Laura C G de Graaff in
Google Scholar
PubMed
(related to the chronic endocrine disorder) in the 2 years after transfer to AC. Inclusion criteria We included patients who were treated at Erasmus MC-Sophia department of Paediatric Endocrinology between 1 January 2013 and 31 December 2014, who
Search for other papers by Sommayya Aftab in
Google Scholar
PubMed
Search for other papers by Diliara Gubaeva in
Google Scholar
PubMed
Search for other papers by Jayne A L Houghton in
Google Scholar
PubMed
Search for other papers by Antonia Dastamani in
Google Scholar
PubMed
Search for other papers by Ellada Sotiridou in
Google Scholar
PubMed
Search for other papers by Clare Gilbert in
Google Scholar
PubMed
Search for other papers by Sarah E Flanagan in
Google Scholar
PubMed
Search for other papers by Anatoly Tiulpakov in
Google Scholar
PubMed
Search for other papers by Maria Melikyan in
Google Scholar
PubMed
Search for other papers by Pratik Shah in
Google Scholar
PubMed
Background
Hyperinsulinism/hyperammonemia (HI/HA) syndrome is the second most common type of congenital hyperinsulinism caused by an activating GLUD1 mutation.
Objective
The aim of this study was to determine the clinical profile and long-term neurological outcomes in children with HI/HA syndrome.
Method
This study is a retrospective review of patients with GLUD1 mutation, treated at two centers in the UK and Russia, over a 15-year period. Different risk factors for neuro-developmental disorders were analysed by Mann–Whitney U test and Fisher’s exact P test.
Results
We identified 25 cases with GLUD1 mutations (12 males). Median age of presentation was 7 months (12 h–18 months). Hypoglycaemic seizures were the presenting feature in 24 (96%) cases. Twenty four cases responded to diazoxide and protein restriction whilst one patient underwent partial pancreatectomy. In total, 13 cases (52%) developed neurodevelopmental manifestations. Epilepsy (n = 9/25, 36%), learning difficulties (n = 8/25, 32%) and speech delay (n = 8/25, 32%) were the most common neurological manifestation. Median age of presentation for epilepsy was 12 months with generalised tonic-clonic seizures being the most common (n = 4/9, 44.4%) followed by absence seizures (n = 3/9, 33.3%). Early age of presentation (P = 0.02), diazoxide dose (P = 0.04) and a mutation in exon 11 or 12 (P = 0.01) were associated with neurological disorder.
Conclusion
HI/HA syndrome is associated with wide spectrum of neurological disorders. These neurological manifestations were more frequent in cases with mutations affecting the GTP-binding site of GLUD1 in our cohort.
Office for Rare Conditions, Royal Hospital for Children & Queen Elizabeth University Hospital, Glasgow, UK
Search for other papers by S R Ali in
Google Scholar
PubMed
Search for other papers by J Bryce in
Google Scholar
PubMed
Search for other papers by A L Priego-Zurita in
Google Scholar
PubMed
Search for other papers by M Cherenko in
Google Scholar
PubMed
Search for other papers by C Smythe in
Google Scholar
PubMed
Search for other papers by T M de Rooij in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Ghent University Hospital, Ghent, Belgium
Search for other papers by M Cools in
Google Scholar
PubMed
Search for other papers by T Danne in
Google Scholar
PubMed
Search for other papers by H Katugampola in
Google Scholar
PubMed
Department of Medicine & Clinical Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands
Search for other papers by O M Dekkers in
Google Scholar
PubMed
Search for other papers by O Hiort in
Google Scholar
PubMed
Search for other papers by A Linglart in
Google Scholar
PubMed
Search for other papers by I Netchine in
Google Scholar
PubMed
Search for other papers by A Nordenstrom in
Google Scholar
PubMed
Search for other papers by P Attila in
Google Scholar
PubMed
Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
Search for other papers by L Persani in
Google Scholar
PubMed
Search for other papers by N Reisch in
Google Scholar
PubMed
Search for other papers by A Smyth in
Google Scholar
PubMed
Search for other papers by Z Sumnik in
Google Scholar
PubMed
Search for other papers by D Taruscio in
Google Scholar
PubMed
Search for other papers by W E Visser in
Google Scholar
PubMed
Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands
Search for other papers by A M Pereira in
Google Scholar
PubMed
Search for other papers by N M Appelman-Dijkstra in
Google Scholar
PubMed
Office for Rare Conditions, Royal Hospital for Children & Queen Elizabeth University Hospital, Glasgow, UK
Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
Search for other papers by S F Ahmed in
Google Scholar
PubMed
platform was disseminated through allied professional societies including the European Society of Endocrinology (ESE) and the European Society for Paediatric Endocrinology (ESPE), with the platform open to all centres that look after people with such