Search for other papers by Joakim Crona in
Google Scholar
PubMed
Search for other papers by Alberto Delgado Verdugo in
Google Scholar
PubMed
Search for other papers by Dan Granberg in
Google Scholar
PubMed
Search for other papers by Staffan Welin in
Google Scholar
PubMed
Search for other papers by Peter Stålberg in
Google Scholar
PubMed
Search for other papers by Per Hellman in
Google Scholar
PubMed
Search for other papers by Peyman Björklund in
Google Scholar
PubMed
such guidelines, has been mainly excused by cost–benefit explanations. Introduction of novel sequencing techniques (denoted next-generation sequencing or NGS) has dramatically reduced the cost for DNA sequencing (14) . The term NGS includes principally
Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, University Regional Hospital of Patras, Rio, Greece
Mount Auburn Hospital, Harvard Medical School Teaching Hospital, Cambridge, Massachusetts, USA
Search for other papers by M I Stamou in
Google Scholar
PubMed
Search for other papers by P Varnavas in
Google Scholar
PubMed
Search for other papers by L Plummer in
Google Scholar
PubMed
Search for other papers by V Koika in
Google Scholar
PubMed
Search for other papers by N A Georgopoulos in
Google Scholar
PubMed
expression of the IGD phenotype in this ethnic subpopulation ( 1 ). Given that next-generation sequencing (NGS) has emerged a huge number of genes and variation in multiple diseases and disorders, we utilized whole exome sequencing (WES) to examine if
Search for other papers by L A Hughes in
Google Scholar
PubMed
Search for other papers by K McKay-Bounford in
Google Scholar
PubMed
Search for other papers by E A Webb in
Google Scholar
PubMed
Search for other papers by P Dasani in
Google Scholar
PubMed
Search for other papers by S Clokie in
Google Scholar
PubMed
Search for other papers by H Chandran in
Google Scholar
PubMed
Search for other papers by L McCarthy in
Google Scholar
PubMed
Search for other papers by Z Mohamed in
Google Scholar
PubMed
Search for other papers by J M W Kirk in
Google Scholar
PubMed
Search for other papers by N P Krone in
Google Scholar
PubMed
Search for other papers by S Allen in
Google Scholar
PubMed
Search for other papers by T R P Cole in
Google Scholar
PubMed
led to the use of targeted next generation sequencing (NGS) assays. These enable multiple known disease-causative genes to be sequenced in parallel alongside initial clinical assessment and biochemical investigations, potentially avoiding the need for
Search for other papers by Xu-Feng Chen in
Google Scholar
PubMed
Search for other papers by Cong He in
Google Scholar
PubMed
Search for other papers by Peng-Cheng Yu in
Google Scholar
PubMed
Search for other papers by Wei-Dong Ye in
Google Scholar
PubMed
Search for other papers by Peizhen Han in
Google Scholar
PubMed
Search for other papers by Jia-Qian Hu in
Google Scholar
PubMed
Search for other papers by Yulong Wang in
Google Scholar
PubMed
Next-generation sequencing (NGS) is of great benefit to clinical practice in terms of identifying genetic alterations. This study aims to clarify the gene background and its influence on thyroid tumor in Chinese population. NGS data and corresponding clinicopathological features (sex, age, tumor size, extrathyroidal invasion, metastasis, multifocality and TNM stage) were collected and analyzed retrospectively from 2844 individual thyroid tumor samples during July 2021 to August 2022. 2337 (82%) of the cohort possess genetic alterations including BRAF (71%), RAS (4%), RET/PTC (4%), TERT (3%), RET (2.2%) and TP53 (1.4%). Diagnostic sensitivity before surgery can be significantly increased from 0.76 to 0.91 when cytology is supplemented by NGS. Our results show that BRAF positive papillary thyroid cancer (PTC) patients tend to have elder age, smaller tumor size, less vascular invasion, more frequent tumor multifocality and significantly higher cervical lymph node metastatic rate. Mutation at RET gene codon 918 and 634 is strongly correlated with medullary thyroid cancer (MTC), However it did not display more invasive clinical characteristics. TERT positive patients are more likely to have elder age, larger tumor size, more tumor invasiveness, and more advanced TNM stage, indicating poor prognosis. Patients with TERT, RET/PTC1 and CHEK2 mutation are more susceptible to lateral lymph node metastasis. In conclusion. NGS can be a useful tool which provides practical gene evidence in the process of diagnosis and treatment in thyroid tumors.
Search for other papers by Tiemo S Gerber in
Google Scholar
PubMed
Search for other papers by Arno Schad in
Google Scholar
PubMed
Search for other papers by Nils Hartmann in
Google Scholar
PubMed
Search for other papers by Erik Springer in
Google Scholar
PubMed
Search for other papers by Ulrich Zechner in
Google Scholar
PubMed
Search for other papers by Thomas J Musholt in
Google Scholar
PubMed
alternatives such as targeted therapies. Although Landa and coworkers ( 1 ) as well as Xu and Ghossein ( 8 ) reported an extensive investigation on PDTC, we still need to learn more about the driving molecular alterations. Using a next-generation sequencing
Department of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Search for other papers by Stamatina Ioakim in
Google Scholar
PubMed
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Search for other papers by Silvia Andonova in
Google Scholar
PubMed
Search for other papers by Magdalena Avbelj-Stefanija in
Google Scholar
PubMed
Search for other papers by Federico Baronio in
Google Scholar
PubMed
Search for other papers by Jerome Bouligand in
Google Scholar
PubMed
Search for other papers by Hennie T Bruggenwirth in
Google Scholar
PubMed
Search for other papers by Justin H Davies in
Google Scholar
PubMed
Search for other papers by Elfride De Baere in
Google Scholar
PubMed
Search for other papers by Iveta Dzivite-Krisane in
Google Scholar
PubMed
Search for other papers by Paula Fernandez-Alvarez in
Google Scholar
PubMed
Search for other papers by Alexander Gheldof in
Google Scholar
PubMed
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Search for other papers by Claudia Giavoli in
Google Scholar
PubMed
Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Search for other papers by Olaf Hiort in
Google Scholar
PubMed
Search for other papers by Paul-Martin Holterhus in
Google Scholar
PubMed
Search for other papers by Anders Juul in
Google Scholar
PubMed
Search for other papers by Csilla Krausz in
Google Scholar
PubMed
Search for other papers by Kristina Lagerstedt-Robinson in
Google Scholar
PubMed
West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, United Kingdom
Search for other papers by Ruth McGowan in
Google Scholar
PubMed
Search for other papers by Uta Neumann in
Google Scholar
PubMed
Search for other papers by Antonio Novelli in
Google Scholar
PubMed
Search for other papers by Xavier Peyrassol in
Google Scholar
PubMed
Search for other papers by Leonidas A Phylactou in
Google Scholar
PubMed
Search for other papers by Julia Rohayem in
Google Scholar
PubMed
Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Search for other papers by Dineke Westra in
Google Scholar
PubMed
Search for other papers by Valeria Vezzoli in
Google Scholar
PubMed
Search for other papers by Raffaella Rossetti in
Google Scholar
PubMed
Introduction The technological advancements in genetics have had a profound impact on the diagnosis of non-communicable diseases. A next-generation sequencing (NGS) approach may lead to the identification of genetic variants with an
Search for other papers by Lukas Plachy in
Google Scholar
PubMed
Search for other papers by Petra Dusatkova in
Google Scholar
PubMed
Search for other papers by Klara Maratova in
Google Scholar
PubMed
Search for other papers by Shenali Anne Amaratunga in
Google Scholar
PubMed
Search for other papers by Dana Zemkova in
Google Scholar
PubMed
Search for other papers by Vit Neuman in
Google Scholar
PubMed
Search for other papers by Stanislava Kolouskova in
Google Scholar
PubMed
Search for other papers by Barbora Obermannova in
Google Scholar
PubMed
Search for other papers by Marta Snajderova in
Google Scholar
PubMed
Search for other papers by Zdenek Sumnik in
Google Scholar
PubMed
Search for other papers by Jan Lebl in
Google Scholar
PubMed
Search for other papers by Stepanka Pruhova in
Google Scholar
PubMed
pituitary have been associated with CPHD to date ( 2 , 3 ). With the progress of next-generation sequencing (NGS) methods ( 3 ), the number of genes involved in pituitary development is increasing rapidly ( 4 , 5 ). Moreover, bigger genomic rearrangements
Search for other papers by Barbora Pekova in
Google Scholar
PubMed
Search for other papers by Sarka Dvorakova in
Google Scholar
PubMed
Search for other papers by Vlasta Sykorova in
Google Scholar
PubMed
Search for other papers by Gabriela Vacinova in
Google Scholar
PubMed
Search for other papers by Eliska Vaclavikova in
Google Scholar
PubMed
Search for other papers by Jitka Moravcova in
Google Scholar
PubMed
Search for other papers by Rami Katra in
Google Scholar
PubMed
Search for other papers by Petr Vlcek in
Google Scholar
PubMed
Search for other papers by Pavla Sykorova in
Google Scholar
PubMed
Search for other papers by Daniela Kodetova in
Google Scholar
PubMed
Search for other papers by Josef Vcelak in
Google Scholar
PubMed
Search for other papers by Bela Bendlova in
Google Scholar
PubMed
). Next-generation sequencing The analyzed genes were HRAS (exons 2, 3), KRAS (exons 2, 3), NRAS (exons 2, 3), BRAF (exon 15), TERT (promoter), IDH1 gene (exons 4, 6), CHEK2 (exons 3, 4, 7, 11, 13), PPM1D (exons 1, 4, 5, 6), EIF1AX
Search for other papers by Lukas Plachy in
Google Scholar
PubMed
Search for other papers by Lenka Petruzelkova in
Google Scholar
PubMed
Search for other papers by Petra Dusatkova in
Google Scholar
PubMed
Search for other papers by Klara Maratova in
Google Scholar
PubMed
Search for other papers by Dana Zemkova in
Google Scholar
PubMed
Search for other papers by Lenka Elblova in
Google Scholar
PubMed
Search for other papers by Vit Neuman in
Google Scholar
PubMed
Search for other papers by Stanislava Kolouskova in
Google Scholar
PubMed
Search for other papers by Barbora Obermannova in
Google Scholar
PubMed
Search for other papers by Marta Snajderova in
Google Scholar
PubMed
Search for other papers by Zdenek Sumnik in
Google Scholar
PubMed
Search for other papers by Jan Lebl in
Google Scholar
PubMed
Search for other papers by Stepanka Pruhova in
Google Scholar
PubMed
FSS was elucidated prior to the study (genes SHOX (6), ACAN (2), PTPN11 (2), and NF1 ). Children with no genetic cause of their short stature elucidated prior to the study were subsequently examined using next-generation sequencing (NGS) methods
Search for other papers by Yijun Tang in
Google Scholar
PubMed
Search for other papers by Yao Chen in
Google Scholar
PubMed
Search for other papers by Jiayi Wang in
Google Scholar
PubMed
Search for other papers by Qianwen Zhang in
Google Scholar
PubMed
Search for other papers by Yirou Wang in
Google Scholar
PubMed
Search for other papers by Yufei Xu in
Google Scholar
PubMed
Search for other papers by Xin Li in
Google Scholar
PubMed
Search for other papers by Jian Wang in
Google Scholar
PubMed
Search for other papers by Xiumin Wang in
Google Scholar
PubMed
46,XY DSD patients between 2016 and 2022 and compare the efficiency of two different next-generation sequencing (NGS) methods, targeted gene panel sequencing (TPS), and whole-exome sequencing (WES). Through analysis and discussion of sequencing