Search for other papers by Yali Cheng in
Google Scholar
PubMed
Search for other papers by Qiaoying Lv in
Google Scholar
PubMed
Search for other papers by Bingying Xie in
Google Scholar
PubMed
Search for other papers by Bingyi Yang in
Google Scholar
PubMed
Search for other papers by Weiwei Shan in
Google Scholar
PubMed
Search for other papers by Chengcheng Ning in
Google Scholar
PubMed
Search for other papers by Bing Li in
Google Scholar
PubMed
Search for other papers by Liying Xie in
Google Scholar
PubMed
Search for other papers by Chao Gu in
Google Scholar
PubMed
Search for other papers by Xuezhen Luo in
Google Scholar
PubMed
Search for other papers by Xiaojun Chen in
Google Scholar
PubMed
Search for other papers by Qin Zhu in
Google Scholar
PubMed
implantation of estrogen pellet and/or high-fat diet to mimic sustained estrogen stimulation and insulin resistance. The present study unraveled alterations in endometrial transcriptome profile and associated molecular pathways, which might disturb the
Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
Search for other papers by Riying Liang in
Google Scholar
PubMed
Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
Search for other papers by Meijun Wang in
Google Scholar
PubMed
Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
Search for other papers by Chang Fu in
Google Scholar
PubMed
Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
Search for other papers by Hua Liang in
Google Scholar
PubMed
Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
Search for other papers by Hongrong Deng in
Google Scholar
PubMed
Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
Search for other papers by Ying Tan in
Google Scholar
PubMed
Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
Search for other papers by Fen Xu in
Google Scholar
PubMed
Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
Search for other papers by Mengyin Cai in
Google Scholar
PubMed
in various tissues, including the kidney, after exposure to a high-fat diet (HFD) ( 19 ). Nevertheless, the role of SIRT1 in the protective effects of liraglutide on kidney disease induced by HFD has not yet been evaluated. Herein, we used HFD
Search for other papers by Yi Jia in
Google Scholar
PubMed
Search for other papers by Yanan Yang in
Google Scholar
PubMed
Search for other papers by Jing Qu in
Google Scholar
PubMed
Search for other papers by Lijun Yin in
Google Scholar
PubMed
Search for other papers by Xiaohui Wang in
Google Scholar
PubMed
D) high-fat diet intervention. The blots of chemerin were quantified by ImageJ software and normalized against GAPDH, then the normalized values were compared and statistically analyzed (bar chart). ** P < 0.01 vs WT. WT, wild-type mice; WT + EX, WT
Search for other papers by Jessica S Jarmasz in
Google Scholar
PubMed
Search for other papers by Yan Jin in
Google Scholar
PubMed
Search for other papers by Hana Vakili in
Google Scholar
PubMed
Search for other papers by Peter A Cattini in
Google Scholar
PubMed
). The 171hGH/CS TG mice were used previously to assess the effect of an acute 3-day high-fat diet (HFD) on daily rhythmic hGH secretion and synthesis ( 13 ). Levels of hGH-N RNA displayed a circadian pattern by oscillating over a 24-h time frame that
Search for other papers by Anna C Simcocks in
Google Scholar
PubMed
School of Science and Health, Western Sydney University, Campbelltown, New South Wales, Australia
Search for other papers by Kayte A Jenkin in
Google Scholar
PubMed
Search for other papers by Lannie O’Keefe in
Google Scholar
PubMed
Search for other papers by Chrishan S Samuel in
Google Scholar
PubMed
The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Victoria, Australia
Search for other papers by Michael L Mathai in
Google Scholar
PubMed
Australian Institute for Musculoskeletal Science (AIMSS), College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
Search for other papers by Andrew J McAinch in
Google Scholar
PubMed
School of Environment and Sciences, Griffith University, Nathan, Queensland, Australia
Search for other papers by Deanne H Hryciw in
Google Scholar
PubMed
Centre (Canning Vale, Western Australia). Sprague–Dawley rats were selected due to their ability to gain weight on a high-fat diet (HFD). This strain of rat also shows a diverse response in weight gain following consumption of a HFD with some Sprague
Search for other papers by Souad Daamouch in
Google Scholar
PubMed
Search for other papers by Sylvia Thiele in
Google Scholar
PubMed
Search for other papers by Lorenz Hofbauer in
Google Scholar
PubMed
Search for other papers by Martina Rauner in
Google Scholar
PubMed
by chronic conditions and their associated complications ( 6 ). Also the health of younger age groups is challenged by a more sedentary lifestyle and frequent consumption of high-fat diets (HFDs) leading to obesity ( 7 , 8 ). To date, over 1 billion
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
Search for other papers by Liangming Li in
Google Scholar
PubMed
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
Search for other papers by Yuan Wei in
Google Scholar
PubMed
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
Search for other papers by Chunlu Fang in
Google Scholar
PubMed
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
Search for other papers by Shujing Liu in
Google Scholar
PubMed
Search for other papers by Fu Zhou in
Google Scholar
PubMed
Search for other papers by Ge Zhao in
Google Scholar
PubMed
Search for other papers by Yaping Li in
Google Scholar
PubMed
Search for other papers by Yuan Luo in
Google Scholar
PubMed
Search for other papers by Ziyi Guo in
Google Scholar
PubMed
Search for other papers by Weiqun Lin in
Google Scholar
PubMed
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
Search for other papers by Wenqi Yang in
Google Scholar
PubMed
fasting insulin levels and HOMA-IR in Chinese subjects ( 11 ). Induction of adipose tissue fibrosis by overexpression of HIF1α led to exacerbated adipose inflammation and aggravated glucose intolerance in mice fed with a high-fat diet (HFD) ( 7 ). On the
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
Search for other papers by Wenqi Yang in
Google Scholar
PubMed
Search for other papers by Ling Liu in
Google Scholar
PubMed
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
Search for other papers by Yuan Wei in
Google Scholar
PubMed
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
Search for other papers by Chunlu Fang in
Google Scholar
PubMed
Search for other papers by Fu Zhou in
Google Scholar
PubMed
Search for other papers by Jinbao Chen in
Google Scholar
PubMed
Search for other papers by Qinghua Han in
Google Scholar
PubMed
Search for other papers by Meifang Huang in
Google Scholar
PubMed
Search for other papers by Xuan Tan in
Google Scholar
PubMed
Search for other papers by Qiuyue Liu in
Google Scholar
PubMed
Search for other papers by Qiang Pan in
Google Scholar
PubMed
Search for other papers by Lu Zhang in
Google Scholar
PubMed
Search for other papers by Xiaojuan Lei in
Google Scholar
PubMed
Key Laboratory of Sports Technique, Tactics and Physical Function of General Administration of Sport of China, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
Search for other papers by Liangming Li in
Google Scholar
PubMed
the fibroblast growth factor superfamily, has attracted increasing attention in recent years for its role in regulating glucose and lipid metabolism. During the consumption of a ketogenic diet or a high-fat diet, FGF21-knockout mice develop more
Search for other papers by Sara Ullsten in
Google Scholar
PubMed
Search for other papers by Sara Bohman in
Google Scholar
PubMed
Search for other papers by Marie E Oskarsson in
Google Scholar
PubMed
Search for other papers by K Peter R Nilsson in
Google Scholar
PubMed
Search for other papers by Gunilla T Westermark in
Google Scholar
PubMed
Department of Medical Sciences, Uppsala University, Uppsala, Sweden
Search for other papers by Per-Ola Carlsson in
Google Scholar
PubMed
(ob/ob), high-fat diet (HFD) or administration of glucocorticoids ( 19 , 20 , 21 ). IAPP itself has a significant role in the peptides misfolding and aggregation. ProIAPP is more prone to form aggregations than mature IAPP and a hypersecretion of
Search for other papers by Ying Pei in
Google Scholar
PubMed
Search for other papers by Rui Wang in
Google Scholar
PubMed
Search for other papers by Wanyu Chen in
Google Scholar
PubMed
Search for other papers by Shulin Yi in
Google Scholar
PubMed
Search for other papers by Chen Huang in
Google Scholar
PubMed
Search for other papers by Shaochan Liang in
Google Scholar
PubMed
Search for other papers by Hongying Cao in
Google Scholar
PubMed
Search for other papers by Yifei Xu in
Google Scholar
PubMed
Search for other papers by Bo Tan in
Google Scholar
PubMed
Introduction Obesity, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes mellitus (T2DM) are thought to be caused by the Western, high-fat diet (HFD) ( 1 ). These diseases are associated with various gastrointestinal (GI) motility