Search Results
Search for other papers by Annelies van’t Westeinde in
Google Scholar
PubMed
Search for other papers by Leif Karlsson in
Google Scholar
PubMed
Search for other papers by Valeria Messina in
Google Scholar
PubMed
Search for other papers by Lena Wallensteen in
Google Scholar
PubMed
Search for other papers by Manuela Brösamle in
Google Scholar
PubMed
Search for other papers by Giorgio Dal Maso in
Google Scholar
PubMed
Search for other papers by Alessandro Lazzerini in
Google Scholar
PubMed
Search for other papers by Jette Kristensen in
Google Scholar
PubMed
Search for other papers by Diana Kwast in
Google Scholar
PubMed
Search for other papers by Lea Tschaidse in
Google Scholar
PubMed
Search for other papers by Matthias K Auer in
Google Scholar
PubMed
Search for other papers by Hanna F Nowotny in
Google Scholar
PubMed
Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Search for other papers by Svetlana Lajic in
Google Scholar
PubMed
Introduction Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase (21-OH) deficiency occurs in around 1:10,000–1:15,000 newborns ( 1 , 2 , 3 , 4 , 5 ). It is caused by mutations in the CYP21A2 gene coding for the 21-OH enzyme
Search for other papers by Qiuli Liu in
Google Scholar
PubMed
Search for other papers by Lin-ang Wang in
Google Scholar
PubMed
Search for other papers by Jian Su in
Google Scholar
PubMed
Search for other papers by Dali Tong in
Google Scholar
PubMed
Search for other papers by Weihua Lan in
Google Scholar
PubMed
Search for other papers by Luofu Wang in
Google Scholar
PubMed
Search for other papers by Gaolei Liu in
Google Scholar
PubMed
Search for other papers by Jun Zhang in
Google Scholar
PubMed
AmCare Genomics Lab, Guangzhou, People’s Republic of China
Search for other papers by Victor Wei Zhang in
Google Scholar
PubMed
Search for other papers by Dianzheng Zhang in
Google Scholar
PubMed
Search for other papers by Rongrong Chen in
Google Scholar
PubMed
Search for other papers by Qingyi Zhu in
Google Scholar
PubMed
Search for other papers by Jun Jiang in
Google Scholar
PubMed
Introduction Congenital adrenal hyperplasia (CAH) is one of the most severe disorders of metabolism with an overall incidence of approximately 1:15,000 worldwide ( 1 ). CAH encompasses a group of enzymatic deficiencies of cortisol synthesis
UPMC Univ, Paris, France
Search for other papers by Anne Bachelot in
Google Scholar
PubMed
Search for other papers by Magaly Vialon in
Google Scholar
PubMed
Search for other papers by Amandine Baptiste in
Google Scholar
PubMed
Search for other papers by Isabelle Tejedor in
Google Scholar
PubMed
Search for other papers by Caroline Elie in
Google Scholar
PubMed
Université Paris Descartes, Paris, France
Search for other papers by Michel Polak in
Google Scholar
PubMed
UPMC Univ, Paris, France
Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Search for other papers by the CRMERC study group in
Google Scholar
PubMed
’ ( 1 ). Congenital adrenal hyperplasia (CAH) is a lifelong condition. CAH is classified according to symptoms, age of presentation and genetics and is usually divided into two forms: the classic or severe form and the non-classic form ( 2 ). Pediatric
Search for other papers by Dafydd Aled Rees in
Google Scholar
PubMed
Search for other papers by Deborah P Merke in
Google Scholar
PubMed
Search for other papers by Wiebke Arlt in
Google Scholar
PubMed
Search for other papers by Aude Brac De La Perriere in
Google Scholar
PubMed
Search for other papers by Angelica Linden Hirschberg in
Google Scholar
PubMed
Search for other papers by Anders Juul in
Google Scholar
PubMed
Search for other papers by John Newell-Price in
Google Scholar
PubMed
Search for other papers by Alessandro Prete in
Google Scholar
PubMed
Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Search for other papers by Nike M Stikkelbroeck in
Google Scholar
PubMed
Search for other papers by Philippe A Touraine in
Google Scholar
PubMed
Search for other papers by Alex Lewis in
Google Scholar
PubMed
Search for other papers by John Porter in
Google Scholar
PubMed
Search for other papers by Helen Coope in
Google Scholar
PubMed
Search for other papers by Richard J Ross in
Google Scholar
PubMed
Introduction The control of congenital adrenal hyperplasia (CAH) is suboptimal on standard hydrocortisone replacement therapy because it does not control the overnight rise in adrenocorticotropic hormone (ACTH) that drives the production of
Search for other papers by Ingeborg Brønstad in
Google Scholar
PubMed
Search for other papers by Lars Breivik in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, Division of Medicine, University of Bergen, 5021 Bergen, Norway
Search for other papers by Paal Methlie in
Google Scholar
PubMed
Search for other papers by Anette S B Wolff in
Google Scholar
PubMed
Search for other papers by Eirik Bratland in
Google Scholar
PubMed
Search for other papers by Ingrid Nermoen in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, Division of Medicine, University of Bergen, 5021 Bergen, Norway
Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Department of Clinical Science, Department of Medicine, Division of Medicine, University of Bergen, 5021 Bergen, Norway
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Azziz R Baskin LS Ghizzoni L Hensle TW Merke DP Meyer-Bahlburg HF Miller WL Montori VM Oberfield SE . Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline
Department of Analysis, Universidade Federal do Rio Grande do Sul (UFRGS), School of Pharmacy, Porto Alegre, RS, Brazil
Search for other papers by Simone Martins de Castro in
Google Scholar
PubMed
Search for other papers by Paloma Wiest in
Google Scholar
PubMed
Search for other papers by Poli Mara Spritzer in
Google Scholar
PubMed
Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
Department of Pediatrics, Universidade Federal do Rio Grande do Sul (UFRGS), Medical School, Porto Alegre, RS, Brazil
Search for other papers by Cristiane Kopacek in
Google Scholar
PubMed
Introduction Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder characterized by inadequate cortisol secretion (with or without insufficient aldosterone production) and androgen excess, caused by deficiency in one of the
Department of Pediatrics, St. Anna Kinderspital, Medical University of Vienna, Vienna, Austria
Search for other papers by Stefan Riedl in
Google Scholar
PubMed
Search for other papers by Friedrich-Wilhelm Röhl in
Google Scholar
PubMed
Search for other papers by Walter Bonfig in
Google Scholar
PubMed
Search for other papers by Jürgen Brämswig in
Google Scholar
PubMed
Search for other papers by Annette Richter-Unruh in
Google Scholar
PubMed
Search for other papers by Susanne Fricke-Otto in
Google Scholar
PubMed
Search for other papers by Markus Bettendorf in
Google Scholar
PubMed
Search for other papers by Felix Riepe in
Google Scholar
PubMed
Search for other papers by Gernot Kriegshäuser in
Google Scholar
PubMed
Search for other papers by Eckhard Schönau in
Google Scholar
PubMed
Search for other papers by Gertrud Even in
Google Scholar
PubMed
Search for other papers by Berthold Hauffa in
Google Scholar
PubMed
Search for other papers by Helmuth-Günther Dörr in
Google Scholar
PubMed
Search for other papers by Reinhard W Holl in
Google Scholar
PubMed
Search for other papers by Klaus Mohnike in
Google Scholar
PubMed
Search for other papers by the AQUAPE CAH Study Group in
Google Scholar
PubMed
Introduction Congenital adrenal hyperplasia (CAH; incidence 1 in 10–15,000) due to 21-hydroxylase deficiency (21-OH) ( CYP21A2 ; OMIM 201910) is an autosomal recessive disorder resulting in a deficient production of the steroid hormones
Search for other papers by Heike Hoyer-Kuhn in
Google Scholar
PubMed
Search for other papers by Angela Huebner in
Google Scholar
PubMed
Search for other papers by Anette Richter-Unruh in
Google Scholar
PubMed
Search for other papers by Markus Bettendorf in
Google Scholar
PubMed
Search for other papers by Tilman Rohrer in
Google Scholar
PubMed
Search for other papers by Klaus Kapelari in
Google Scholar
PubMed
St.Anna Kinderspital, Medical University of Vienna, Vienna, Austria
Search for other papers by Stefan Riedl in
Google Scholar
PubMed
Search for other papers by Klaus Mohnike in
Google Scholar
PubMed
Search for other papers by Helmuth-Günther Dörr in
Google Scholar
PubMed
Search for other papers by Friedrich-Wilhelm Roehl in
Google Scholar
PubMed
Search for other papers by Katharina Fink in
Google Scholar
PubMed
Search for other papers by Reinhard W Holl in
Google Scholar
PubMed
Search for other papers by Joachim Woelfle in
Google Scholar
PubMed
Introduction Classic congenital adrenal hyperplasia (CAH) is a hereditary autosomal recessive condition affecting adrenal steroidogenesis. Most of the cases (90–95%) are caused by mutations in the 21-hydroxylase gene ( CYP21A2 ) leading to
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jakob Albrethsen in
Google Scholar
PubMed
Search for other papers by Vassos Neocleous in
Google Scholar
PubMed
Search for other papers by Federico Baronio in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Lise Aksglaede in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Niels Jørgensen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Peter Christiansen in
Google Scholar
PubMed
Pediatric Endocrinology Clinic, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
Search for other papers by Meropi Toumba in
Google Scholar
PubMed
Search for other papers by Pavlos Fanis in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Marie Lindhardt Ljubicic in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
Introduction Congenital adrenal hyperplasia (CAH) is a recessive condition that affects the adrenal glands. The condition occurs in 1 out of 14–18,000 births worldwide ( 1 ). The most common form of CAH results from mutations in the
Search for other papers by Muriel Houang in
Google Scholar
PubMed
Search for other papers by Thao Nguyen-Khoa in
Google Scholar
PubMed
Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
Search for other papers by Thibaut Eguether in
Google Scholar
PubMed
Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
Search for other papers by Bettina Ribault in
Google Scholar
PubMed
Search for other papers by Séverine Brabant in
Google Scholar
PubMed
Université de Paris, INSERM, Institut IMAGINE, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
Search for other papers by Michel Polak in
Google Scholar
PubMed
Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, Paris, France
Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France
Search for other papers by Irène Netchine in
Google Scholar
PubMed
Département de Métabolomique Clinique, Hôpital Saint-Antoine, AP-HP Sorbonne Université, Paris, France
Search for other papers by Antonin Lamazière in
Google Scholar
PubMed
Introduction The newborn screening program (NBS) for congenital adrenal hyperplasia (CAH) presents a number of issues in the context of the prevention of life-threatening salt wasting crises and subsequent collapse. This neonatal period is