Search Results

You are looking at 1 - 10 of 99 items for :

  • "adrenocorticotropic hormone" x
Clear All
Takuhiro Sonoyama Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Takuhiro Sonoyama in
Google Scholar
PubMed
Close
,
Masakatsu Sone Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Masakatsu Sone in
Google Scholar
PubMed
Close
,
Naohisa Tamura Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Naohisa Tamura in
Google Scholar
PubMed
Close
,
Kyoko Honda Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Kyoko Honda in
Google Scholar
PubMed
Close
,
Daisuke Taura Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Daisuke Taura in
Google Scholar
PubMed
Close
,
Katsutoshi Kojima Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Katsutoshi Kojima in
Google Scholar
PubMed
Close
,
Yorihide Fukuda Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Yorihide Fukuda in
Google Scholar
PubMed
Close
,
Naotetsu Kanamoto Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Naotetsu Kanamoto in
Google Scholar
PubMed
Close
,
Masako Miura Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Masako Miura in
Google Scholar
PubMed
Close
,
Akihiro Yasoda Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Akihiro Yasoda in
Google Scholar
PubMed
Close
,
Hiroshi Arai Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Hiroshi Arai in
Google Scholar
PubMed
Close
,
Hiroshi Itoh Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Hiroshi Itoh in
Google Scholar
PubMed
Close
, and
Kazuwa Nakao Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan

Search for other papers by Kazuwa Nakao in
Google Scholar
PubMed
Close

) plasma renin activity of non-PA group, IHA group, and APA group at 0900, 2300 and after dexamethasone administration. The median of each value is shown. ACTH, adrenocorticotropic hormone; F, cortisol; PRA, plasma renin activity; dex, dexamethasone. PAC

Open access
Sarah Zaheer Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, North Carolina, USA

Search for other papers by Sarah Zaheer in
Google Scholar
PubMed
Close
,
Kayla Meyer Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA

Search for other papers by Kayla Meyer in
Google Scholar
PubMed
Close
,
Rebecca Easly Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA

Search for other papers by Rebecca Easly in
Google Scholar
PubMed
Close
,
Omar Bayomy Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA

Search for other papers by Omar Bayomy in
Google Scholar
PubMed
Close
,
Janet Leung Section of Endocrinology, Virginia Mason Medical Center, Seattle, Washington, USA

Search for other papers by Janet Leung in
Google Scholar
PubMed
Close
,
Andrew W Koefoed Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA

Search for other papers by Andrew W Koefoed in
Google Scholar
PubMed
Close
,
Mahyar Heydarpour Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA

Search for other papers by Mahyar Heydarpour in
Google Scholar
PubMed
Close
,
Roy Freeman Harvard Medical School, Boston, Massachusetts, USA
Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA

Search for other papers by Roy Freeman in
Google Scholar
PubMed
Close
, and
Gail K Adler Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
Harvard Medical School, Boston, Massachusetts, USA

Search for other papers by Gail K Adler in
Google Scholar
PubMed
Close

Glucocorticoid use is the most common cause of secondary osteoporosis. Poor skeletal health related to glucocorticoid use is thought to involve inhibition of the Wnt/β-catenin signaling pathway, a key pathway in osteoblastogenesis. Sclerostin, a peptide produced primarily by osteocytes, is an antagonist of the Wnt/β-catenin signaling pathway, raising the possibility that sclerostin is involved in glucocorticoids’ adverse effects on bone. The aim of this study was to determine whether an acute infusion of cosyntropin (i.e. ACTH(1–24)), which increases endogenous cortisol, increases serum sclerostin levels as compared to a placebo infusion. This study was performed using blood samples obtained from a previously published, double-blind, placebo-controlled, randomized, cross-over study among healthy men and women who received infusions of placebo or cosyntropin after being supine and fasted overnight (ClinicalTrials.gov NCT02339506). A total of 17 participants were analyzed. There was a strong correlation (R2 = 0.65, P < 0.0001) between the two baseline sclerostin measurements measured at the start of each visit, and men had a significantly higher average baseline sclerostin compared to women. As anticipated, cosyntropin significantly increased serum cortisol levels, whereas cortisol levels fell during placebo infusion, consistent with the diurnal variation in cortisol. There was no significant effect of cosyntropin as compared to placebo infusions on serum sclerostin over 6–24 h (P = 0.10). In conclusion, this randomized, placebo-controlled study was unable to detect a significant effect of a cosyntropin infusion on serum sclerostin levels in healthy men and women.

Open access
Arno Téblick Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Arno Téblick in
Google Scholar
PubMed
Close
,
Ilse Vanhorebeek Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Ilse Vanhorebeek in
Google Scholar
PubMed
Close
,
Inge Derese Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Inge Derese in
Google Scholar
PubMed
Close
,
An Jacobs Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by An Jacobs in
Google Scholar
PubMed
Close
,
Renata Haghedooren Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Renata Haghedooren in
Google Scholar
PubMed
Close
,
Sofie Maebe Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Sofie Maebe in
Google Scholar
PubMed
Close
,
Gerdien A Zeilmaker-Roest Department of Neonatal & Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands

Search for other papers by Gerdien A Zeilmaker-Roest in
Google Scholar
PubMed
Close
,
Enno D Wildschut Department of Neonatal & Pediatric Intensive Care, Division of Pediatric Intensive Care, Erasmus MC – Sophia Children’s Hospital, Rotterdam, the Netherlands

Search for other papers by Enno D Wildschut in
Google Scholar
PubMed
Close
,
Lies Langouche Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Lies Langouche in
Google Scholar
PubMed
Close
, and
Greet Van den Berghe Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium

Search for other papers by Greet Van den Berghe in
Google Scholar
PubMed
Close

In critically ill adults, high plasma cortisol in the face of low ACTH coincides with high pro-opiomelanocortin (POMC) levels. Glucocorticoids further lower ACTH without affecting POMC. We hypothesized that in pediatric cardiac surgery-induced critical illness, plasma POMC is elevated, plasma ACTH transiently rises intraoperatively but becomes suppressed post-operatively, and glucocorticoid administration amplifies this phenotype. From 53 patients (0–36 months), plasma was obtained pre-operatively, intraoperatively, and on post-operative days 1 and 2. Plasma was also collected from 24 healthy children. In patients, POMC was supra-normal pre-operatively (P < 0.0001) but no longer thereafter (P > 0.05). ACTH was never high in patients. While in glucocorticoid-naive patients ACTH became suppressed by post-operative day 1 (P < 0.0001), glucocorticoid-treated patients had already suppressed ACTH intraoperatively (P ≤ 0.0001). Pre-operatively high POMC, not accompanied by increased plasma ACTH, suggests a centrally activated HPA axis with reduced pituitary processing of POMC into ACTH. Increasing systemic glucocorticoid availability with glucocorticoid treatment accelerated the suppression of plasma ACTH.

Significance statement

Glucocorticoids are often administered during pediatric cardiac surgery. In critically ill children, endogenous systemic glucocorticoid availability is elevated already upon ICU admission while ACTH levels are normal. This hormonal constellation suggests the presence of active feedback inhibition of ACTH. In this study, we have documented that intraoperative administration of glucocorticoids accelerates the suppression of ACTH, resulting in low plasma ACTH already upon ICU admission. Pre-operative plasma POMC, the ACTH precursor, but not ACTH, was increased. This is compatible with a centrally activated HPA axis prior to surgery in young children but reduced processing of POMC into ACTH within the pituitary. These findings suggest that glucocorticoid treatment in the context of pediatric cardiac surgery may amplify pre-existing impaired pituitary processing of the prohormone POMC.

Open access
Giovanni Fanni Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden

Search for other papers by Giovanni Fanni in
Google Scholar
PubMed
Close
,
Petros Katsogiannos Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden

Search for other papers by Petros Katsogiannos in
Google Scholar
PubMed
Close
,
Bipasha Nandi Jui Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden

Search for other papers by Bipasha Nandi Jui in
Google Scholar
PubMed
Close
,
Magnus Sundbom Department of Surgical Sciences, Uppsala University, Uppsala, Sweden

Search for other papers by Magnus Sundbom in
Google Scholar
PubMed
Close
,
Susanne Hetty Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden

Search for other papers by Susanne Hetty in
Google Scholar
PubMed
Close
,
Maria J Pereira Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden

Search for other papers by Maria J Pereira in
Google Scholar
PubMed
Close
, and
Jan W Eriksson Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden

Search for other papers by Jan W Eriksson in
Google Scholar
PubMed
Close

-effects models for differences in hormone levels or AUC OGTT across visits: * P  < 0.05; ** P  < 0.01; *** P  < 0.001. N = 13 (except for glucagon, N = 7). ACTH, adrenocorticotropic hormone; GH, growth hormone; GLP-1, glucagon-like peptide 1; GIP, glucose

Open access
Janko Sattler Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Department of Rheumatology and Clinical Immunology, Charité-University Medicine, Berlin, Germany

Search for other papers by Janko Sattler in
Google Scholar
PubMed
Close
,
Jinwen Tu Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia

Search for other papers by Jinwen Tu in
Google Scholar
PubMed
Close
,
Shihani Stoner Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia

Search for other papers by Shihani Stoner in
Google Scholar
PubMed
Close
,
Jingbao Li Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, China

Search for other papers by Jingbao Li in
Google Scholar
PubMed
Close
,
Frank Buttgereit Department of Rheumatology and Clinical Immunology, Charité-University Medicine, Berlin, Germany

Search for other papers by Frank Buttgereit in
Google Scholar
PubMed
Close
,
Markus J Seibel Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia
Department of Endocrinology & Metabolism, Concord Hospital, Sydney, Australia

Search for other papers by Markus J Seibel in
Google Scholar
PubMed
Close
,
Hong Zhou Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia

Search for other papers by Hong Zhou in
Google Scholar
PubMed
Close
, and
Mark S Cooper Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia
Department of Endocrinology & Metabolism, Concord Hospital, Sydney, Australia

Search for other papers by Mark S Cooper in
Google Scholar
PubMed
Close

on a joint inflammation intensity scale from 0 to 12 points. Serum assays for corticosterone and adrenocorticotropic hormone Serum samples were collected at 12:00 h, before animals were killed and stored at −80°C until further examination

Open access
Rachel Forfar Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Rachel Forfar in
Google Scholar
PubMed
Close
,
Mashal Hussain Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Mashal Hussain in
Google Scholar
PubMed
Close
,
Puneet Khurana Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Puneet Khurana in
Google Scholar
PubMed
Close
,
Jennifer Cook Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Jennifer Cook in
Google Scholar
PubMed
Close
,
Steve Lewis Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Steve Lewis in
Google Scholar
PubMed
Close
,
Dillon Popat Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Dillon Popat in
Google Scholar
PubMed
Close
,
David Jackson Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by David Jackson in
Google Scholar
PubMed
Close
,
Ed McIver Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Ed McIver in
Google Scholar
PubMed
Close
,
Jeff Jerman Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Jeff Jerman in
Google Scholar
PubMed
Close
,
Debra Taylor Centre for Therapeutics Discovery, LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK

Search for other papers by Debra Taylor in
Google Scholar
PubMed
Close
,
Adrian JL Clark Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Adrian JL Clark in
Google Scholar
PubMed
Close
, and
Li F Chan Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, UK

Search for other papers by Li F Chan in
Google Scholar
PubMed
Close

Introduction The melanocortins, comprising the α-, β-, and γ-melanocyte-stimulating hormones (MSHs) and adrenocorticotropic hormone (ACTH), are a family of peptide hormones cleaved from the prohormone pro-opiomelanocortin that have a diverse

Open access
Amit Kumar Department of Medicine, Christian Medical College and Hospital, Ludhiana, Punjab, India

Search for other papers by Amit Kumar in
Google Scholar
PubMed
Close
,
Maria Ghosh Department of Biochemistry, Christian Medical College and Hospital, Ludhiana, Punjab, India

Search for other papers by Maria Ghosh in
Google Scholar
PubMed
Close
, and
Jubbin Jagan Jacob Department of Endocrinology, Christian Medical College and Hospital, Ludhiana, Punjab, India

Search for other papers by Jubbin Jagan Jacob in
Google Scholar
PubMed
Close

tests and an Acton Prolongatum® (adrenocorticotropic hormone(1–34) (ACTH(1–34)) stimulation test (APST). Inclusion and exclusion criteria Adult patients (≥18 years) with EuVHNa who provided consent were included. Patients were considered to have

Open access
Nathalia G B P Ferreira Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Nathalia G B P Ferreira in
Google Scholar
PubMed
Close
,
Joao L O Madeira Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Joao L O Madeira in
Google Scholar
PubMed
Close
,
Peter Gergics Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Peter Gergics in
Google Scholar
PubMed
Close
,
Renata Kertsz Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Renata Kertsz in
Google Scholar
PubMed
Close
,
Juliana M Marques Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Juliana M Marques in
Google Scholar
PubMed
Close
,
Nicholas S S Trigueiro Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Nicholas S S Trigueiro in
Google Scholar
PubMed
Close
,
Anna Flavia Figueredo Benedetti University of Michigan Medical School, Department of Human Genetics, Ann Arbor, Michigan, United States

Search for other papers by Anna Flavia Figueredo Benedetti in
Google Scholar
PubMed
Close
,
Bruna V Azevedo Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Bruna V Azevedo in
Google Scholar
PubMed
Close
,
Bianca H V Fernandes Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
Universidade de São Paulo, Zebrafish Facility, São Paulo, São Paulo, Brazil

Search for other papers by Bianca H V Fernandes in
Google Scholar
PubMed
Close
,
Debora D Bissegatto Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Debora D Bissegatto in
Google Scholar
PubMed
Close
,
Isabela P Biscotto Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Isabela P Biscotto in
Google Scholar
PubMed
Close
,
Qing Fang Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Qing Fang in
Google Scholar
PubMed
Close
,
Qianyi Ma Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Qianyi Ma in
Google Scholar
PubMed
Close
,
Asye B Ozel Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Asye B Ozel in
Google Scholar
PubMed
Close
,
Jun Li Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Jun Li in
Google Scholar
PubMed
Close
,
Sally A Camper Laboratório de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Sally A Camper in
Google Scholar
PubMed
Close
,
Alexander A L Jorge Unidade de Endocrinologia Genética, Laboratório de Endocrinologia Celular e Molecular LIM25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil

Search for other papers by Alexander A L Jorge in
Google Scholar
PubMed
Close
,
Berenice B Mendonça Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Berenice B Mendonça in
Google Scholar
PubMed
Close
,
Ivo J P Arnhold Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Ivo J P Arnhold in
Google Scholar
PubMed
Close
, and
Luciani R Carvalho Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM42, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil

Search for other papers by Luciani R Carvalho in
Google Scholar
PubMed
Close

committee under the number CAAE 0642812.4.0000.0068 Proband A female patient was born from consanguineous parents and presented with CPHD (growth hormone (GH), thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), prolactin (PRL

Open access
Jan W Eriksson Department of Medical Sciences, Uppsala University, Uppsala, Sweden

Search for other papers by Jan W Eriksson in
Google Scholar
PubMed
Close
,
Reem A Emad Department of Pharmacy, Uppsala University, Uppsala, Sweden

Search for other papers by Reem A Emad in
Google Scholar
PubMed
Close
,
Martin H Lundqvist Department of Medical Sciences, Uppsala University, Uppsala, Sweden

Search for other papers by Martin H Lundqvist in
Google Scholar
PubMed
Close
,
Niclas Abrahamsson Department of Medical Sciences, Uppsala University, Uppsala, Sweden

Search for other papers by Niclas Abrahamsson in
Google Scholar
PubMed
Close
, and
Maria C Kjellsson Department of Pharmacy, Uppsala University, Uppsala, Sweden

Search for other papers by Maria C Kjellsson in
Google Scholar
PubMed
Close

(GH) ( 10 ). Cortisol secretion is primarily regulated by adrenocorticotropic hormone (ACTH), which, in turn, is stimulated by corticotrophin-releasing hormone (CRH) via the hypothalamic–pituitary–adrenal (HPA) axis. A major physiological effect of

Open access
Fidéline Bonnet-Serrano Université Paris Cité, Paris, France
Inserm U1016-CNRS UMR8104, Paris, France
Hormonology Department, Cochin Hospital, Paris, France

Search for other papers by Fidéline Bonnet-Serrano in
Google Scholar
PubMed
Close
,
Maxime Barat Université Paris Cité, Paris, France
Inserm U1016-CNRS UMR8104, Paris, France
Radiology Department, Cochin Hospital, Paris, France

Search for other papers by Maxime Barat in
Google Scholar
PubMed
Close
,
Anna Vaczlavik Université Paris Cité, Paris, France
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France

Search for other papers by Anna Vaczlavik in
Google Scholar
PubMed
Close
,
Anne Jouinot Inserm U1016-CNRS UMR8104, Paris, France

Search for other papers by Anne Jouinot in
Google Scholar
PubMed
Close
,
Lucas Bouys Université Paris Cité, Paris, France
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France

Search for other papers by Lucas Bouys in
Google Scholar
PubMed
Close
,
Christelle Laguillier-Morizot Université Paris Cité, Paris, France
Hormonology Department, Cochin Hospital, Paris, France
INSERM, Physiopathologie et Pharmacotoxicologie Placentaire Humaine : Microbiote Pré & Post natal, Paris, France

Search for other papers by Christelle Laguillier-Morizot in
Google Scholar
PubMed
Close
,
Corinne Zientek Hormonology Department, Cochin Hospital, Paris, France

Search for other papers by Corinne Zientek in
Google Scholar
PubMed
Close
,
Catherine Simonneau Hormonology Department, Cochin Hospital, Paris, France

Search for other papers by Catherine Simonneau in
Google Scholar
PubMed
Close
,
Etienne Larger Université Paris Cité, Paris, France
Inserm U1016-CNRS UMR8104, Paris, France
Diabetology Department, Cochin Hospital, Paris, France

Search for other papers by Etienne Larger in
Google Scholar
PubMed
Close
,
Laurence Guignat Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France

Search for other papers by Laurence Guignat in
Google Scholar
PubMed
Close
,
Lionel Groussin Université Paris Cité, Paris, France
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France

Search for other papers by Lionel Groussin in
Google Scholar
PubMed
Close
,
Guillaume Assié Université Paris Cité, Paris, France
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France

Search for other papers by Guillaume Assié in
Google Scholar
PubMed
Close
,
Jean Guibourdenche Université Paris Cité, Paris, France
Hormonology Department, Cochin Hospital, Paris, France
INSERM, Physiopathologie et Pharmacotoxicologie Placentaire Humaine : Microbiote Pré & Post natal, Paris, France

Search for other papers by Jean Guibourdenche in
Google Scholar
PubMed
Close
,
Ioannis Nicolis Université Paris Cité, Paris, France
UR 7537 BioSTM, Paris, France

Search for other papers by Ioannis Nicolis in
Google Scholar
PubMed
Close
,
Marie-Claude Menet Institut de Chimie Physique, Université Paris-Saclay-CNRS, UMR8000, Orsay, France

Search for other papers by Marie-Claude Menet in
Google Scholar
PubMed
Close
, and
Jérôme Bertherat Université Paris Cité, Paris, France
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France

Search for other papers by Jérôme Bertherat in
Google Scholar
PubMed
Close

G-protein coupled membrane receptors, responsible for a cortisol response to non-physiological stimuli ( 8 , 9 , 10 ). The second one is the secretion of an ectopic intra-adrenal adrenocorticotropic hormone (ACTH) by clusters of adrenocortical

Open access