Tulane University School of Medicine, Department of Psychiatry, Division of Child and Adolescent Psychiatry, Tulane University, New Orleans, Louisiana, USA
Search for other papers by Andrew R Dismukes in
Google Scholar
PubMed
Tulane University School of Medicine, Department of Psychiatry, Division of Child and Adolescent Psychiatry, Tulane University, New Orleans, Louisiana, USA
Search for other papers by Vanessa J Meyer in
Google Scholar
PubMed
Search for other papers by Elizabeth A Shirtcliff in
Google Scholar
PubMed
Search for other papers by Katherine P Theall in
Google Scholar
PubMed
Search for other papers by Kyle C Esteves in
Google Scholar
PubMed
Search for other papers by Stacy S Drury in
Google Scholar
PubMed
Introduction Dehydroepiandrosterone (DHEA) is a steroid hormone that is sometimes called the ‘anti-aging hormone’ because of ts protective effects on memory, neuronal growth, and neuronal activity ( 1 ). DHEA is produced both centrally, as a
Search for other papers by Ahmet Uçar in
Google Scholar
PubMed
Search for other papers by Nurçin Saka in
Google Scholar
PubMed
Search for other papers by Firdevs Baş in
Google Scholar
PubMed
Search for other papers by Nihal Hatipoğlu in
Google Scholar
PubMed
Search for other papers by Rüveyde Bundak in
Google Scholar
PubMed
Search for other papers by Feyza Darendeliler in
Google Scholar
PubMed
) . It is biochemically characterized by serum DHEAS concentrations over 40 μg/dl. The etiology of PA is not clear. Relative deficiency of 3β-hydroxysteroid dehydrogenase, early activation of adrenarche by extra- and intra-adrenal factors that are yet
Faculdades Pequeno Príncipe, Rebouças, Curitiba, Parana, Brazil
Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC) at Universidade Federal do Paraná, Agostinho Leão Jr., Glória, Curitiba, Parana, Brazil
Search for other papers by Emanuelle Nunes-Souza in
Google Scholar
PubMed
Search for other papers by Mônica Evelise Silveira in
Google Scholar
PubMed
Faculdades Pequeno Príncipe, Rebouças, Curitiba, Parana, Brazil
Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC) at Universidade Federal do Paraná, Agostinho Leão Jr., Glória, Curitiba, Parana, Brazil
Search for other papers by Monalisa Castilho Mendes in
Google Scholar
PubMed
Departamento de Medicina, PUC-PR, Prado Velho, Curitiba, Parana, Brazil
Search for other papers by Seigo Nagashima in
Google Scholar
PubMed
Departamento de Medicina, PUC-PR, Prado Velho, Curitiba, Parana, Brazil
Search for other papers by Caroline Busatta Vaz de Paula in
Google Scholar
PubMed
Departamento de Medicina, PUC-PR, Prado Velho, Curitiba, Parana, Brazil
Search for other papers by Guilherme Guilherme Vieira Cavalcante da Silva in
Google Scholar
PubMed
Departamento de Medicina, PUC-PR, Prado Velho, Curitiba, Parana, Brazil
Search for other papers by Giovanna Silva Barbosa in
Google Scholar
PubMed
Faculdades Pequeno Príncipe, Rebouças, Curitiba, Parana, Brazil
Search for other papers by Julia Belgrowicz Martins in
Google Scholar
PubMed
Departamento de Medicina, PUC-PR, Prado Velho, Curitiba, Parana, Brazil
Search for other papers by Lúcia de Noronha in
Google Scholar
PubMed
Search for other papers by Luana Lenzi in
Google Scholar
PubMed
Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC) at Universidade Federal do Paraná, Agostinho Leão Jr., Glória, Curitiba, Parana, Brazil
Search for other papers by José Renato Sales Barbosa in
Google Scholar
PubMed
Search for other papers by Rayssa Danilow Fachin Donin in
Google Scholar
PubMed
Search for other papers by Juliana Ferreira de Moura in
Google Scholar
PubMed
Laboratório Central de Análises Clínicas, Hospital de Clínicas, Universidade Federal do Paraná, Centro, Curitiba, Paraná, Brazil
Search for other papers by Gislaine Custódio in
Google Scholar
PubMed
Faculdades Pequeno Príncipe, Rebouças, Curitiba, Parana, Brazil
Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC) at Universidade Federal do Paraná, Agostinho Leão Jr., Glória, Curitiba, Parana, Brazil
Search for other papers by Cleber Machado-Souza in
Google Scholar
PubMed
Search for other papers by Enzo Lalli in
Google Scholar
PubMed
Faculdades Pequeno Príncipe, Rebouças, Curitiba, Parana, Brazil
Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC) at Universidade Federal do Paraná, Agostinho Leão Jr., Glória, Curitiba, Parana, Brazil
Departamento de Saúde Coletiva, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
Search for other papers by Bonald Cavalcante de Figueiredo in
Google Scholar
PubMed
major steroid products in the fetal zone, namely DHEA and DHEA sulfate (DHEAS), which serve as estrogen precursors essential for the maintenance of pregnancy ( 5 , 6 ). Onset of zonal differential steroidogenic activity and strong remodeling of the
Search for other papers by Stavroula A Paschou in
Google Scholar
PubMed
Search for other papers by Eleni Palioura in
Google Scholar
PubMed
Search for other papers by Dimitrios Ioannidis in
Google Scholar
PubMed
Search for other papers by Panagiotis Anagnostis in
Google Scholar
PubMed
Search for other papers by Argyro Panagiotakou in
Google Scholar
PubMed
Search for other papers by Vasiliki Loi in
Google Scholar
PubMed
Search for other papers by Georgios Karageorgos in
Google Scholar
PubMed
Search for other papers by Dimitrios G Goulis in
Google Scholar
PubMed
Search for other papers by Andromachi Vryonidou in
Google Scholar
PubMed
degree of insulin resistance ( 7 ). Androgens are mainly of ovarian origin but in 30% of the patients, they originate from the adrenal glands ( 8 ), the main representative being dehydroepiandrosterone sulfate (DHEA-S). The effect of this specific (mainly
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Maki Igarashi in
Google Scholar
PubMed
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Tadayuki Ayabe in
Google Scholar
PubMed
Search for other papers by Kiwako Yamamoto-Hanada in
Google Scholar
PubMed
Search for other papers by Keiko Matsubara in
Google Scholar
PubMed
Search for other papers by Hatoko Sasaki in
Google Scholar
PubMed
Search for other papers by Mayako Saito-Abe in
Google Scholar
PubMed
Search for other papers by Miori Sato in
Google Scholar
PubMed
Search for other papers by Nathan Mise in
Google Scholar
PubMed
Search for other papers by Akihiko Ikegami in
Google Scholar
PubMed
Search for other papers by Masayuki Shimono in
Google Scholar
PubMed
Search for other papers by Reiko Suga in
Google Scholar
PubMed
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Search for other papers by Shouichi Ohga in
Google Scholar
PubMed
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Search for other papers by Masafumi Sanefuji in
Google Scholar
PubMed
Search for other papers by Masako Oda in
Google Scholar
PubMed
Search for other papers by Hiroshi Mitsubuchi in
Google Scholar
PubMed
Search for other papers by Takehiro Michikawa in
Google Scholar
PubMed
Search for other papers by Shin Yamazaki in
Google Scholar
PubMed
Search for other papers by Shoji Nakayama in
Google Scholar
PubMed
Search for other papers by Yukihiro Ohya in
Google Scholar
PubMed
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Maki Fukami in
Google Scholar
PubMed
.12 Hormone measurements Serum levels of E 2 , testosterone, and dehydroepiandrosterone sulfate (DHEA-S) were measured using LC-MS/MS (LSI Medience, Tokyo, Japan). The methods were described previously ( 7 ). The lower detection limits of E 2 , testosterone
Search for other papers by Thomas Reinehr in
Google Scholar
PubMed
Search for other papers by Alexandra Kulle in
Google Scholar
PubMed
Search for other papers by Juliane Rothermel in
Google Scholar
PubMed
Search for other papers by Caroline Knop-Schmenn in
Google Scholar
PubMed
Search for other papers by Nina Lass in
Google Scholar
PubMed
Search for other papers by Christina Bosse in
Google Scholar
PubMed
Search for other papers by Paul-Martin Holterhus in
Google Scholar
PubMed
, 21-deoxycorticosterone, deoxycorticosterone, corticosterone, 11-deoxycortisol, cortisol, cortisone, androstenedione, testosterone, dehydroepiandrostenedione sulfate (DHEA-S), estrone (E1), estradiol (E2), luteinizing hormone (LH), follicle
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Grethe Å Ueland in
Google Scholar
PubMed
Search for other papers by Thea Grinde in
Google Scholar
PubMed
Department of Medicine, Haukeland University Hospital, Bergen, Norway
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Search for other papers by Paal Methlie in
Google Scholar
PubMed
Search for other papers by Oskar Kelp in
Google Scholar
PubMed
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Department of Medicine, Haukeland University Hospital, Bergen, Norway
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
(UFC), a gold standard in the diagnosis of overt CS, is not sensitive to diagnose patients with ACS. Finally, dehydroepiandrosterone (DHEA) and its sulphated derivate (DHEAS) make up the majority of androgen precursors secreted from zona reticulata in
Search for other papers by Thomas Reinehr in
Google Scholar
PubMed
Search for other papers by Alberto Sánchez-Guijo in
Google Scholar
PubMed
Search for other papers by Nina Lass in
Google Scholar
PubMed
Search for other papers by Stefan A Wudy in
Google Scholar
PubMed
Introduction Obesity is a complex condition associated with changes in many steroid hormones also including androgens: concentrations of testosterone and DHEAS and their precursors are increased in children ( 1 , 2 ) and obese women ( 3
Department of Pediatrics, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
Search for other papers by Letícia Ribeiro Oliveira in
Google Scholar
PubMed
Search for other papers by Carlos Alberto Longui in
Google Scholar
PubMed
Department of Pediatrics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for other papers by Guilherme Guaragna-Filho in
Google Scholar
PubMed
Poison Control Center, FCM, UNICAMP, Campinas, Sao Paulo, Brazil
Search for other papers by José Luiz Costa in
Google Scholar
PubMed
Search for other papers by Rafael Lanaro in
Google Scholar
PubMed
Search for other papers by David Antônio Silva in
Google Scholar
PubMed
Search for other papers by Maria Izabel Chiamolera in
Google Scholar
PubMed
Laboratory of Human Molecular Genetics, Center for Molecular Biology and Genetics Engineering (CBMEG), UNICAMP, Campinas, Sao Paulo, Brazil
Search for other papers by Maricilda Palandi de Mello in
Google Scholar
PubMed
Search for other papers by André Moreno Morcillo in
Google Scholar
PubMed
Department of Medical Genetics and Genomic Medicine, FCM, UNICAMP, Campinas, Sao Paulo, Brazil
Search for other papers by Andrea Trevas Maciel-Guerra in
Google Scholar
PubMed
Department of Pediatrics, FCM, UNICAMP, Campinas, Sao Paulo, Brazil
Search for other papers by Gil Guerra-Junior in
Google Scholar
PubMed
subcutaneously by the main investigator of the study. IA data Hormones assessed at the two moments of the study were total testosterone, dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA) and androstenedione. Each one was evaluated by IA and LC
Search for other papers by Morten Ruge in
Google Scholar
PubMed
Search for other papers by Tea Skaaby in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anna-Maria Andersson in
Google Scholar
PubMed
Department of Clinical Experimental Research, Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Allan Linneberg in
Google Scholar
PubMed
hypothesized that an increased number of hours of sleep per night would lead to higher concentrations of serum testosterone, and thus, the present study sought to evaluate associations of sex hormone-binding globulin (SHBG), dihydroepiandrosteron-sulfate (DHEAS