Search Results
PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
Search for other papers by Laurent Maïmoun in
Google Scholar
PubMed
PhyMedExp, Université de Montpellier, INSERM, CNRS, Montpellier, France
Search for other papers by Denis Mariano-Goulart in
Google Scholar
PubMed
Search for other papers by Helena Huguet in
Google Scholar
PubMed
CIC INSERM 1411, Hôpital Gui de Chauliac, CHU Montpellier, Montpellier Cedex 5, France
Institut de Génomique Fonctionnelle, CNRS UMR 5203/INSERM U661/Université Montpellier, Montpellier, France
Search for other papers by Eric Renard in
Google Scholar
PubMed
Search for other papers by Patrick Lefebvre in
Google Scholar
PubMed
CIC INSERM 1411, Hôpital Gui de Chauliac, CHU Montpellier, Montpellier Cedex 5, France
Search for other papers by Marie-Christine Picot in
Google Scholar
PubMed
Search for other papers by Anne-Marie Dupuy in
Google Scholar
PubMed
Département de Biochimie, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
Search for other papers by Jean-Paul Cristol in
Google Scholar
PubMed
Département d’Urgence et Post-Urgence Psychiatrique, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
Search for other papers by Philippe Courtet in
Google Scholar
PubMed
Search for other papers by Vincent Boudousq in
Google Scholar
PubMed
Search for other papers by Antoine Avignon in
Google Scholar
PubMed
Département d’Urgence et Post-Urgence Psychiatrique, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
Search for other papers by Sébastien Guillaume in
Google Scholar
PubMed
Département Endocrinologie, Nutrition, Diabète, Equipe Nutrition, Diabète, CHU Montpellier, Montpellier, France
Search for other papers by Ariane Sultan in
Google Scholar
PubMed
by inducing the browning of s.c. white adipocytes, which are metabolically favourable for burning energy through thermogenesis ( 51 ). Depending on the experimental conditions (i.e. thermoneutral or cold), brown adipose tissue activity has been
Search for other papers by Herjan J T Coelingh Bennink in
Google Scholar
PubMed
Search for other papers by Jan Krijgh in
Google Scholar
PubMed
Search for other papers by Jan F M Egberts in
Google Scholar
PubMed
Search for other papers by Maria Slootweg in
Google Scholar
PubMed
Search for other papers by Harm H E van Melick in
Google Scholar
PubMed
Search for other papers by Erik P M Roos in
Google Scholar
PubMed
Search for other papers by Diederik M Somford in
Google Scholar
PubMed
Search for other papers by Yvette Zimmerman in
Google Scholar
PubMed
Search for other papers by Iman J Schultz in
Google Scholar
PubMed
Search for other papers by Noel W Clarke in
Google Scholar
PubMed
Search for other papers by R Jeroen A van Moorselaar in
Google Scholar
PubMed
Search for other papers by Frans M J Debruyne in
Google Scholar
PubMed
estrogens in the blood come from aromatization of testosterone in peripheral organs, particularly in adipose tissue, muscle, bone and brain. In both males and females, estrogens act upon binding either to two estrogen receptor isoforms (ERs), ERα and ERβ