Search Results

You are looking at 1 - 6 of 6 items for :

  • Cardiovascular x
Clear All
Henrik Ryberg Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Henrik Ryberg in
Google Scholar
PubMed
Close
,
Anna-Karin Norlén Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Anna-Karin Norlén in
Google Scholar
PubMed
Close
,
Andreas Landin Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Andreas Landin in
Google Scholar
PubMed
Close
,
Per Johansson Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Per Johansson in
Google Scholar
PubMed
Close
,
Zeinab Salman Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Zeinab Salman in
Google Scholar
PubMed
Close
,
Anders Wallin Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden

Search for other papers by Anders Wallin in
Google Scholar
PubMed
Close
,
Johan Svensson Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
Department of Endocrinology, Skaraborg Central Hospital, Skövde, Sweden

Search for other papers by Johan Svensson in
Google Scholar
PubMed
Close
, and
Claes Ohlsson Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
Close

Objective

Sex steroids exert important biological functions within the CNS, but the underlying mechanisms are poorly understood. The contribution of circulating sex steroids to the levels in CNS tissue and cerebrospinal fluid (CSF) has been sparsely investigated in human and with inconclusive results. This could partly be due to lack of sensitive validated assays. To address this, we validated a gas chromatography–tandem mass spectrometry (GC-MS/MS) assay for quantification of sex steroid hormones/precursors in CSF.

Methods

GC-MS/MS quantification of dihydrotestosterone (DHT, CSF lower limit of quantification, 1.5 pg/mL), testosterone (4.9), estrone (E1, 0.88), estradiol (E2, 0.25), dehydroepiandrosterone (DHEA, 38.4), androstenedione (4D, 22.3), and progesterone (P, 4.2) in CSF, and corresponding serum samples from 47 men.

Results

Analyses of CSF revealed that DHEA was the major sex steroid (73.5 ± 31.7 pg/mL) followed by 4D (61.4 ± 29.6 pg/mL) and testosterone (49.5 ± 18.9 pg/mL). The CSF levels of DHT, E2, and E1 were substantially lower, and P was in general not detectable in CSF. For all sex steroids except E2, strong associations between corresponding CSF and serum levels were observed. We propose that testosteronein CSF is derived from circulating testosterone, DHT in CSF is from local conversion from testosterone, while E2 in CSF is from local conversion from 4D in CNS.

Conclusions

We describe the first thoroughly validated highly sensitive mass spectrometric assay for a broad sex steroid hormone panel suitable for human CSF. This assay constitutes a new tool for investigation of the role of sex steroid hormones in the human CNS.

Significance statement

In this study, a fully validated highly sensitive mass spectrometric assay for sex steroids was applied to human CSF. The results were used to describe the relative contribution of peripheral circulating sex steroids together with locally transformation of sex steroids to the levels in CSF. The results are of importance to understand the biological processes of the human brain.

Open access
Shenghe Luo College of Pharmacy, Yanbian University, Yanji, China

Search for other papers by Shenghe Luo in
Google Scholar
PubMed
Close
,
Yunhui Zuo Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China
Department of Cardiology, Yanbian University Hospital, Yanji, China

Search for other papers by Yunhui Zuo in
Google Scholar
PubMed
Close
,
Xiaotian Cui Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China

Search for other papers by Xiaotian Cui in
Google Scholar
PubMed
Close
,
Meiping Zhang Department of Cardiology, Yanbian University Hospital, Yanji, China

Search for other papers by Meiping Zhang in
Google Scholar
PubMed
Close
,
Honghua Jin Department of Pharmacy, Yanbian University Hospital, Yanji, China

Search for other papers by Honghua Jin in
Google Scholar
PubMed
Close
, and
Lan Hong Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China

Search for other papers by Lan Hong in
Google Scholar
PubMed
Close

, 41 ). Piezo 1 is a typical mechanosensitive ion channel protein that links mechanical forces to biological signals ( 42 ). Mechanical stimulation of bone and nerve cells increases the expression of piezo 1, which promotes bone and nerve growth through

Open access
Tao Gao Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China

Search for other papers by Tao Gao in
Google Scholar
PubMed
Close
,
Rui Liu Department of Oncology. The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China

Search for other papers by Rui Liu in
Google Scholar
PubMed
Close
,
Chunli Li Institute of Life Sciences, Chongqing Medical University, Chongqing, China

Search for other papers by Chunli Li in
Google Scholar
PubMed
Close
,
Xinglin Chu Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China

Search for other papers by Xinglin Chu in
Google Scholar
PubMed
Close
,
Qiao Guo Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China

Search for other papers by Qiao Guo in
Google Scholar
PubMed
Close
, and
Dazhi Ke Department of General Practice, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China

Search for other papers by Dazhi Ke in
Google Scholar
PubMed
Close

of smooth muscle contraction ( 19 , 20 ). SPP2 has the effects of regulation of vascular calcification and anti-inflammation ( 21 , 22 , 23 ). GC can isolate actin, regulate immune and inflammatory responses, bind fatty acids, and control bone

Open access
Alicia Romano Department of Pediatrics, New York Medical College, Valhalla, New York, USA

Search for other papers by Alicia Romano in
Google Scholar
PubMed
Close
,
Juan Pablo Kaski Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital & UCL Institute of Cardiovascular Science, London, UK

Search for other papers by Juan Pablo Kaski in
Google Scholar
PubMed
Close
,
Jovanna Dahlgren Department of Paediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden

Search for other papers by Jovanna Dahlgren in
Google Scholar
PubMed
Close
,
Nicky Kelepouris US Medical Affairs, Novo Nordisk Inc., Plainsboro, New Jersey, USA

Search for other papers by Nicky Kelepouris in
Google Scholar
PubMed
Close
,
Alberto Pietropoli Global Medical Affairs, Novo Nordisk Health Care AG, Zurich, Switzerland

Search for other papers by Alberto Pietropoli in
Google Scholar
PubMed
Close
,
Tilman R Rohrer Department of Pediatric Endocrinology, University Children’s Hospital, Saarland University Medical Center, Homburg, Germany

Search for other papers by Tilman R Rohrer in
Google Scholar
PubMed
Close
, and
Michel Polak Paediatric Endocrinology, Diabetology and Gynaecology Department, Hôpital Universitaire Necker Enfants-Malades, AP-HP, Université de Paris, Imagine Institute, Paris, France

Search for other papers by Michel Polak in
Google Scholar
PubMed
Close

.31) 13 −2.57 (1.54) Bone age/chronological age 163 0.83 (0.19) 8 0.87 (0.10) IGF1 SDS (22) 162 −1.13 (1.62) 7 −1.22 (1.98) GH dose at baseline (mg/kg/day) 404 0.044 (0.014) 21 0.040 (0.019) GH-naïve at

Open access
Ying-Lien Cheng Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan

Search for other papers by Ying-Lien Cheng in
Google Scholar
PubMed
Close
,
Ting-I Lee Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

Search for other papers by Ting-I Lee in
Google Scholar
PubMed
Close
,
Yu-Mei Chien Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan

Search for other papers by Yu-Mei Chien in
Google Scholar
PubMed
Close
,
Ting-Wei Lee Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

Search for other papers by Ting-Wei Lee in
Google Scholar
PubMed
Close
, and
Yi-Jen Chen Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan

Search for other papers by Yi-Jen Chen in
Google Scholar
PubMed
Close

/mL is considered to be adequate for improved musculoskeletal health, the optimal serum level of 25(OH)D for organs other than bone remains debatable. The 2018 Vitamin D Supplementation Guidelines recommended daily supplementation of 400–800 IU vitamin D

Open access
Charlotte Höybye Department of Endocrinology and Department of Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden

Search for other papers by Charlotte Höybye in
Google Scholar
PubMed
Close
,
Beverly M K Biller Neuroendocrine Unit, Massachusetts General Hospital, Massachusetts General Hospital, Boston, Massachusetts, USA

Search for other papers by Beverly M K Biller in
Google Scholar
PubMed
Close
,
Jean-Marc Ferran Qualiance ApS, Copenhagen, Denmark

Search for other papers by Jean-Marc Ferran in
Google Scholar
PubMed
Close
,
Murray B Gordon Allegheny Neuroendocrinology Center, Division of Endocrinology, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA

Search for other papers by Murray B Gordon in
Google Scholar
PubMed
Close
,
Nicky Kelepouris US Medical Affairs-Rare Endocrine Disorders, Novo Nordisk, Inc, Plainsboro, New Jersey, USA

Search for other papers by Nicky Kelepouris in
Google Scholar
PubMed
Close
,
Navid Nedjatian Global Medical Affairs – Rare Endocrine Disorders, Novo Nordisk Health Care AG, Zurich, Switzerland

Search for other papers by Navid Nedjatian in
Google Scholar
PubMed
Close
,
Anne H Olsen Epidemiology, Novo Nordisk A/S, Soborg, Denmark

Search for other papers by Anne H Olsen in
Google Scholar
PubMed
Close
, and
Matthias M Weber Unit of Endocrinology, 1, Medical Department, University Hospital, Universitätsmedizin Mainz, der Johannes Gutenberg-Universität, Mainz, Germany

Search for other papers by Matthias M Weber in
Google Scholar
PubMed
Close

to improve body composition (reduced fat mass, increased lean mass and increased muscle strength), bone mineral density and CV risk markers (increased high-density lipoprotein (HDL) cholesterol and reductions in low-density lipoprotein (LDL

Open access