Search for other papers by Agnieszka Adamska in
Google Scholar
PubMed
Search for other papers by Vitalii Ulychnyi in
Google Scholar
PubMed
Search for other papers by Katarzyna Siewko in
Google Scholar
PubMed
Search for other papers by Anna Popławska-Kita in
Google Scholar
PubMed
Search for other papers by Małgorzata Szelachowska in
Google Scholar
PubMed
Search for other papers by Marcin Adamski in
Google Scholar
PubMed
Search for other papers by Angelika Buczyńska in
Google Scholar
PubMed
Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
Search for other papers by Adam Jacek Krętowski in
Google Scholar
PubMed
Introduction An adrenal incidentaloma is defined as a lesion of the adrenal gland that is discovered incidentally during imaging techniques performed for disorders unrelated to the adrenal gland ( 1 , 2 ). In most cases, adrenal
Search for other papers by Avinaash Maharaj in
Google Scholar
PubMed
Search for other papers by Ruth Kwong in
Google Scholar
PubMed
Search for other papers by Jack Williams in
Google Scholar
PubMed
Search for other papers by Christopher Smith in
Google Scholar
PubMed
Search for other papers by Helen Storr in
Google Scholar
PubMed
Search for other papers by Ruth Krone in
Google Scholar
PubMed
Search for other papers by Debora Braslavsky in
Google Scholar
PubMed
Search for other papers by Maria Clemente in
Google Scholar
PubMed
Search for other papers by Nanik Ram in
Google Scholar
PubMed
Search for other papers by Indraneel Banerjee in
Google Scholar
PubMed
Search for other papers by Semra Çetinkaya in
Google Scholar
PubMed
Search for other papers by Federica Buonocore in
Google Scholar
PubMed
Search for other papers by Tülay Güran in
Google Scholar
PubMed
Search for other papers by John C Achermann in
Google Scholar
PubMed
Search for other papers by Louise Metherell in
Google Scholar
PubMed
Search for other papers by Rathi Prasad in
Google Scholar
PubMed
Lovric (3) 29 † c.1049A>G, p.D350G Turkish F 0.75 Y Y Calcifications Maharaj (21) 30 c.1077del, p.G360Afs*49; c.1058A>G, p. K353R Unknown M 0.1 Y U Calcifications Zhao (10) 31 c.1079G>T, p.G360V
Search for other papers by Emily Warmington in
Google Scholar
PubMed
Search for other papers by Gabrielle Smith in
Google Scholar
PubMed
Search for other papers by Vasileios Chortis in
Google Scholar
PubMed
Department of Neurosurgery, Technical University Munich (TMU), Munich, Germany
Search for other papers by Raimunde Liang in
Google Scholar
PubMed
Search for other papers by Juliane Lippert in
Google Scholar
PubMed
Search for other papers by Sonja Steinhauer in
Google Scholar
PubMed
Search for other papers by Laura-Sophie Landwehr in
Google Scholar
PubMed
Medizinische Klinik Und Poliklinik III, University Hospital Carl Gustav Carus, Dresden, Germany
Search for other papers by Constanze Hantel in
Google Scholar
PubMed
Search for other papers by Katja Kiseljak-Vassiliades in
Google Scholar
PubMed
Search for other papers by Margaret E Wierman in
Google Scholar
PubMed
Search for other papers by Barbara Altieri in
Google Scholar
PubMed
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by Paul A Foster in
Google Scholar
PubMed
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by Cristina L Ronchi in
Google Scholar
PubMed
.1634/theoncologist.2018-0838 ) 22 Awad MM Chu QS Gandhi L Stephenson JJ Govindan R Bradford DS Bonomi PD Ellison DM Eaton KD Fritsch H , et al. An open-label, phase II study of the polo-like kinase-1 (Plk-1) inhibitor, BI 2536, in patients with
Search for other papers by Rachel Forfar in
Google Scholar
PubMed
Search for other papers by Mashal Hussain in
Google Scholar
PubMed
Search for other papers by Puneet Khurana in
Google Scholar
PubMed
Search for other papers by Jennifer Cook in
Google Scholar
PubMed
Search for other papers by Steve Lewis in
Google Scholar
PubMed
Search for other papers by Dillon Popat in
Google Scholar
PubMed
Search for other papers by David Jackson in
Google Scholar
PubMed
Search for other papers by Ed McIver in
Google Scholar
PubMed
Search for other papers by Jeff Jerman in
Google Scholar
PubMed
Search for other papers by Debra Taylor in
Google Scholar
PubMed
Search for other papers by Adrian JL Clark in
Google Scholar
PubMed
Search for other papers by Li F Chan in
Google Scholar
PubMed
L Oldfield EH . Cushing’s disease: pathobiology, diagnosis, and management . Journal of Neurosurgery 2017 126 404 – 417 . ( https://doi.org/10.3171/2016.1.JNS152119 ) 14 Feldhaus AL Anderson K Dutzar B Ojala E McNeill PD Fan P
Search for other papers by Debra M Gordon in
Google Scholar
PubMed
Search for other papers by Pablo Beckers in
Google Scholar
PubMed
Search for other papers by Emilie Castermans in
Google Scholar
PubMed
Search for other papers by Sebastian J C M M Neggers in
Google Scholar
PubMed
Search for other papers by Liliya Rostomyan in
Google Scholar
PubMed
Search for other papers by Vincent Bours in
Google Scholar
PubMed
Search for other papers by Patrick Petrossians in
Google Scholar
PubMed
Search for other papers by Vinciane Dideberg in
Google Scholar
PubMed
Search for other papers by Albert Beckers in
Google Scholar
PubMed
Search for other papers by Adrian F Daly in
Google Scholar
PubMed
particularly true in the case of pheochromocytomas and paragangliomas (PPGL) ( 1 ). These neuroendocrine tumors produce symptoms due to direct tumor effects and the synthesis and release of bioactive amines, neurotransmitters, and hormones; about 20 new
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Margret J Einarsdottir in
Google Scholar
PubMed
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Penelope Trimpou in
Google Scholar
PubMed
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Gudmundur Johannsson in
Google Scholar
PubMed
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
Search for other papers by Oskar Ragnarsson in
Google Scholar
PubMed
(stress dose) during physical and/or psychological stress. Similarly, patients undergoing severe stress who have recently ceased GC treatment also require stress doses of GC ( 1 ). Common symptoms and signs of adrenal crisis include hypotension, abdominal
Search for other papers by Annelies van’t Westeinde in
Google Scholar
PubMed
Search for other papers by Leif Karlsson in
Google Scholar
PubMed
Search for other papers by Valeria Messina in
Google Scholar
PubMed
Search for other papers by Lena Wallensteen in
Google Scholar
PubMed
Search for other papers by Manuela Brösamle in
Google Scholar
PubMed
Search for other papers by Giorgio Dal Maso in
Google Scholar
PubMed
Search for other papers by Alessandro Lazzerini in
Google Scholar
PubMed
Search for other papers by Jette Kristensen in
Google Scholar
PubMed
Search for other papers by Diana Kwast in
Google Scholar
PubMed
Search for other papers by Lea Tschaidse in
Google Scholar
PubMed
Search for other papers by Matthias K Auer in
Google Scholar
PubMed
Search for other papers by Hanna F Nowotny in
Google Scholar
PubMed
Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Search for other papers by Svetlana Lajic in
Google Scholar
PubMed
Introduction Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase (21-OH) deficiency occurs in around 1:10,000–1:15,000 newborns ( 1 , 2 , 3 , 4 , 5 ). It is caused by mutations in the CYP21A2 gene coding for the 21-OH enzyme