Search Results
Search for other papers by Anna Gorbacheva in
Google Scholar
PubMed
Search for other papers by Anna Eremkina in
Google Scholar
PubMed
Search for other papers by Daria Goliusova in
Google Scholar
PubMed
Search for other papers by Julia Krupinova in
Google Scholar
PubMed
Search for other papers by Natalia Mokrysheva in
Google Scholar
PubMed
Introduction Menin is a highly conserved protein encoded by the ubiquitously expressed MEN1 gene. It partakes in the regulation of various intracellular processes, including transcription, maintaining genome stability, proliferation and
Search for other papers by Eleftherios E Deiktakis in
Google Scholar
PubMed
Search for other papers by Eleftheria Ieronymaki in
Google Scholar
PubMed
Search for other papers by Peter Zarén in
Google Scholar
PubMed
Search for other papers by Agnes Hagsund in
Google Scholar
PubMed
Search for other papers by Elin Wirestrand in
Google Scholar
PubMed
Search for other papers by Johan Malm in
Google Scholar
PubMed
Search for other papers by Christos Tsatsanis in
Google Scholar
PubMed
Imperial College London, Institute of Reproductive and Developmental Biology, London, UK
Search for other papers by Ilpo T Huhtaniemi in
Google Scholar
PubMed
Malmö University Hospital, Reproductive Medicine Center, Malmö, Sweden
Search for other papers by Aleksander Giwercman in
Google Scholar
PubMed
Search for other papers by Yvonne Lundberg Giwercman in
Google Scholar
PubMed
( Fig. 1B ). Sixteen men were on the same occasion treated with 300 IU follitropin α rFSH (Gonal-f), and the rest ( n = 17) were untreated. Subsequently, the same dose of rFSH was self-administered three times/week for the rest of the study period, in
Search for other papers by Hélène Singeisen in
Google Scholar
PubMed
Search for other papers by Mariko Melanie Renzulli in
Google Scholar
PubMed
Search for other papers by Vojtech Pavlicek in
Google Scholar
PubMed
Search for other papers by Pascal Probst in
Google Scholar
PubMed
Search for other papers by Fabian Hauswirth in
Google Scholar
PubMed
Search for other papers by Markus K Muller in
Google Scholar
PubMed
Search for other papers by Magdalene Adamczyk in
Google Scholar
PubMed
Search for other papers by Achim Weber in
Google Scholar
PubMed
Search for other papers by Reto Martin Kaderli in
Google Scholar
PubMed
Search for other papers by Pietro Renzulli in
Google Scholar
PubMed
-Vickers/Williams-Pollock/Wagenmann–Froboese syndrome --- --- OMIM ® #131100 #171400 #162300 #610755 --- Gene MEN1 RET RET CDKN1B MAX Location 11q13.1 10q11.21 10q11.21 12p13.1 14q23.3 Inheritance Autosomal-dominant Autosomal
Search for other papers by Arnaud Lagarde in
Google Scholar
PubMed
Search for other papers by Grégory Mougel in
Google Scholar
PubMed
Search for other papers by Lucie Coppin in
Google Scholar
PubMed
Search for other papers by Magalie Haissaguerre in
Google Scholar
PubMed
Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France
Search for other papers by Lauriane Le Collen in
Google Scholar
PubMed
Search for other papers by Amira Mohamed in
Google Scholar
PubMed
Search for other papers by Marc Klein in
Google Scholar
PubMed
Univ. Lille, Inserm, CHU Lille, U1286 – Infinite – Institute for Translational Research in Inflammation, Lille, France
Search for other papers by Marie-Françoise Odou in
Google Scholar
PubMed
Search for other papers by Antoine Tabarin in
Google Scholar
PubMed
Search for other papers by Hedia Brixi in
Google Scholar
PubMed
Search for other papers by Thomas Cuny in
Google Scholar
PubMed
Search for other papers by Brigitte Delemer in
Google Scholar
PubMed
Search for other papers by Anne Barlier in
Google Scholar
PubMed
Search for other papers by Pauline Romanet in
Google Scholar
PubMed
Introduction Multiple endocrine neoplasia type 1 (MEN1, OMIM 131100) is an autosomal dominant disease due to mutation in the MEN1 gene, characterized by a broad spectrum of clinical manifestations ( 1 ). The classic clinical triad includes
Department of Public Health, Erasmus University Medical Center, Rotterdam, Netherlands
Search for other papers by Josephina G Kuiper in
Google Scholar
PubMed
Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
Search for other papers by Aline C Fenneman in
Google Scholar
PubMed
Search for other papers by Anne H van der Spek in
Google Scholar
PubMed
Search for other papers by Elena Rampanelli in
Google Scholar
PubMed
Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
Search for other papers by Max Nieuwdorp in
Google Scholar
PubMed
Search for other papers by Myrthe P P van Herk-Sukel in
Google Scholar
PubMed
Netherlands Comprehensive Cancer Organisation, Utrecht, Netherlands
Search for other papers by Valery E P P Lemmens in
Google Scholar
PubMed
Search for other papers by Ernst J Kuipers in
Google Scholar
PubMed
Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, Netherlands
Search for other papers by Ron M C Herings in
Google Scholar
PubMed
Search for other papers by Eric Fliers in
Google Scholar
PubMed
Introduction Primary hypothyroidism is a common condition with a rapidly rising global prevalence. In the Netherlands, the prevalence of overt hypothyroidism has increased from 0.4 to 2.9% over the past 15 years ( 1 ) ( www
Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
Garvan Institute of Medical Research, New South Wales, Australia
School of Medical Sciences, University of New South Wales, New South Wales, Australia
Search for other papers by Vita Birzniece in
Google Scholar
PubMed
Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
Department of Diabetes and Endocrinology, Westmead Hospital, New South Wales, Australia
Search for other papers by Teresa Lam in
Google Scholar
PubMed
Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
Search for other papers by Mark McLean in
Google Scholar
PubMed
Search for other papers by Navneeta Reddy in
Google Scholar
PubMed
Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
Search for other papers by Haleh Shahidipour in
Google Scholar
PubMed
Faculty of Medicine, Health and Human Sciences, Macquarie University, New South Wales, Australia
Crown Princess Mary Cancer Centre, Westmead Hospital, New South Wales, Australia
Search for other papers by Amy Hayden in
Google Scholar
PubMed
Search for other papers by Howard Gurney in
Google Scholar
PubMed
Search for other papers by Glenn Stone in
Google Scholar
PubMed
Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
Steno Diabetes Center Odense, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
Search for other papers by Rikke Hjortebjerg in
Google Scholar
PubMed
Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
Search for other papers by Jan Frystyk in
Google Scholar
PubMed
hypogonadism, it is associated with the development of obesity, insulin resistance, hyperinsulinemia, and increased cardiovascular disease risk ( 1 , 2 ). The metabolic syndrome is present in >50% of men receiving long-term ADT compared to 20% of matched
Search for other papers by Kazhan Mollazadegan in
Google Scholar
PubMed
Search for other papers by Britt Skogseid in
Google Scholar
PubMed
Search for other papers by Johan Botling in
Google Scholar
PubMed
Search for other papers by Tobias Åkerström in
Google Scholar
PubMed
Search for other papers by Barbro Eriksson in
Google Scholar
PubMed
Search for other papers by Staffan Welin in
Google Scholar
PubMed
Search for other papers by Anders Sundin in
Google Scholar
PubMed
Search for other papers by Joakim Crona in
Google Scholar
PubMed
grading of panNENs ( 3 ), high-grade neoplasms were separated into two categories: well-differentiated (WD) pancreatic neuroendocrine tumor grade 3 (panNET-G3) and poorly differentiated (PD) NEC ( 4 ). PanNET-G3 frequently harbors mutations in MEN1 and
Search for other papers by Peiwen Wu in
Google Scholar
PubMed
Search for other papers by Dongjie He in
Google Scholar
PubMed
Search for other papers by Hao Chang in
Google Scholar
PubMed
Search for other papers by Xiaozhi Zhang in
Google Scholar
PubMed
worse prognosis. This is consistent with the results of previous studies ( 1 , 13 , 44 ). Possible explanations for the poorer prognosis in men are that estrogen and progesterone receptor expression is associated with the prognosis of patients with
Search for other papers by Malgorzata Fuksiewicz in
Google Scholar
PubMed
Search for other papers by Maria Kowalska in
Google Scholar
PubMed
Search for other papers by Agnieszka Kolasinska-Cwikla in
Google Scholar
PubMed
Search for other papers by Beata Kotowicz in
Google Scholar
PubMed
the degree of brain damage, for example, in patients after cardiac arrest ( 1 , 2 ). Increased NSE concentrations are also observed in the course of neoplastic diseases. Increasing concentrations of the marker in patients with initially diagnosed