Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Internal Medicine, Lillebaelt Hospital, Kolding, Denmark
Search for other papers by Simon Chang in
Google Scholar
PubMed
Search for other papers by Arkadiusz J Goszczak in
Google Scholar
PubMed
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Search for other papers by Jens Fedder in
Google Scholar
PubMed
Search for other papers by Anders Bojesen in
Google Scholar
PubMed
Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
Search for other papers by M Vakur Bor in
Google Scholar
PubMed
Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
Department of Haematology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
Search for other papers by Moniek P M de Maat in
Google Scholar
PubMed
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
Search for other papers by Anna-Marie B Münster in
Google Scholar
PubMed
Introduction The risk of venous thromboembolism (VTE) among men born with Klinefelter syndrome (KS, 47,XXY) overall is increased more than four-fold ( 1 , 2 , 3 ). In particular, the relative risk of VTE in KS compared with the background
Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
Search for other papers by Henrik Ryberg in
Google Scholar
PubMed
Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
Search for other papers by Anna-Karin Norlén in
Google Scholar
PubMed
Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research (CBAR), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
Search for other papers by Andreas Landin in
Google Scholar
PubMed
Search for other papers by Per Johansson in
Google Scholar
PubMed
Search for other papers by Zeinab Salman in
Google Scholar
PubMed
Search for other papers by Anders Wallin in
Google Scholar
PubMed
Department of Endocrinology, Skaraborg Central Hospital, Skövde, Sweden
Search for other papers by Johan Svensson in
Google Scholar
PubMed
Search for other papers by Claes Ohlsson in
Google Scholar
PubMed
D, androstenedione; DHEA, dehydroepiandrosterone; DHT, dihydrotestosterone; E1, estrone; E2, estradiol; P, progesterone. Sex steroid levels in human serum and CSF We performed measurements in 47 men with the following characteristics
Search for other papers by Mette Faurholdt Gude in
Google Scholar
PubMed
Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark
Search for other papers by Rikke Hjortebjerg in
Google Scholar
PubMed
Search for other papers by Mette Bjerre in
Google Scholar
PubMed
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Morten Haaning Charles in
Google Scholar
PubMed
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Daniel R Witte in
Google Scholar
PubMed
Steno Diabetes Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
Search for other papers by Annelli Sandbæk in
Google Scholar
PubMed
Search for other papers by Jan Frystyk in
Google Scholar
PubMed
Introduction Cardiovascular disease (CVD) is one of the leading causes of death ( 1 ), and consequently, many efforts have been invested in identifying modifiable pathogenic targets that by intervention can reduce the risk of CVD. One such
Search for other papers by Melody Lok-Yi Chan in
Google Scholar
PubMed
Search for other papers by Sammy Wing-Ming Shiu in
Google Scholar
PubMed
Search for other papers by Ching-Lung Cheung in
Google Scholar
PubMed
Search for other papers by Anskar Yu-Hung Leung in
Google Scholar
PubMed
Search for other papers by Kathryn Choon-Beng Tan in
Google Scholar
PubMed
). IDOL is ubiquitously expressed, and unlike the LDLR and PCSK9 genes, IDOL is not regulated by sterol regulatory element-binding protein (SREBP). IDOL is regulated by the sterol-responsive nuclear receptor liver X receptors (LXRα and LXRβ) ( 1 ), and LXR
Search for other papers by Shenghe Luo in
Google Scholar
PubMed
Department of Cardiology, Yanbian University Hospital, Yanji, China
Search for other papers by Yunhui Zuo in
Google Scholar
PubMed
Search for other papers by Xiaotian Cui in
Google Scholar
PubMed
Search for other papers by Meiping Zhang in
Google Scholar
PubMed
Search for other papers by Honghua Jin in
Google Scholar
PubMed
Search for other papers by Lan Hong in
Google Scholar
PubMed
%) 31 (50%) 43 (67.2%) 13 (61.9%) ns BMI ≥ 25 4 (25%) 31 (50%) 21 (32.8%) 8 (38.1%) Gender Men 10 (62.5%) 29 (46.8%) 36 (56.3%) 13 (61.9%) ns Women 6 (37.5%) 33 (53.2%) 28 (43.8%) 8 (38.1%) Age
Search for other papers by Ying-Lien Cheng in
Google Scholar
PubMed
Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
Search for other papers by Ting-I Lee in
Google Scholar
PubMed
Search for other papers by Yu-Mei Chien in
Google Scholar
PubMed
Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
Search for other papers by Ting-Wei Lee in
Google Scholar
PubMed
Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
Search for other papers by Yi-Jen Chen in
Google Scholar
PubMed
1α-hydroxylase) were expressed in human adipocytes, suggesting vitamin D modulates adipose tissue biology ( 30 , 31 ). Vitamin D upregulates the expression of genes involved in fatty acid oxidation and mitochondrial biogenesis in adipose tissue ( 32
Search for other papers by Yumei Zhai in
Google Scholar
PubMed
Search for other papers by Haiming Fu in
Google Scholar
PubMed
Search for other papers by Yu Li in
Google Scholar
PubMed
Search for other papers by Siyuan Li in
Google Scholar
PubMed
Search for other papers by Wenchen Zhang in
Google Scholar
PubMed
Search for other papers by Jianwei Yue in
Google Scholar
PubMed
Search for other papers by Zichao Wang in
Google Scholar
PubMed
Introduction Left ventricular hypertrophy (LVH), a manifestation of cardiac remodeling, is a significant consequence of hypertension ( 1 , 2 , 3 ). It stands as a critical predictor of morbidity and mortality among individuals with