Search for other papers by Clara Lundetoft Clausen in
Google Scholar
PubMed
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
Search for other papers by Niels Erik Skakkebæk in
Google Scholar
PubMed
Search for other papers by Hanne Frederiksen in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Thomas Benfield in
Google Scholar
PubMed
important inhibitory effects towards pro-inflammatory mediators such as interleukin 6 (IL-6) ( 10 ). Therefore, in appropriate responses to critical illness and hyperinflammation, glucocorticoid levels are upregulated, attaining levels up to six
Search for other papers by Sriharsha Gunna in
Google Scholar
PubMed
Search for other papers by Mahaveer Singh in
Google Scholar
PubMed
Search for other papers by Rakesh Pandey in
Google Scholar
PubMed
Search for other papers by Rungmei S K Marak in
Google Scholar
PubMed
Search for other papers by Amita Aggarwal in
Google Scholar
PubMed
Search for other papers by Bibhuti Mohanta in
Google Scholar
PubMed
Search for other papers by Liping Yu in
Google Scholar
PubMed
Search for other papers by Eesh Bhatia in
Google Scholar
PubMed
.3–13.9) 0.7 (0.3–7.5) 0.55 Pyrexia 44 (49%) 29 (73%) b 8 (62%) d 2 (9%) 5 (36%) <0.001 Weight loss 86 (98%) 39 (97.5%) 13 (100%) 20 (95%) 14 (100%) 0.46 Mucocutaneous hyperpigmentation 79 (89%) 34 (85%) 13
Search for other papers by Gregory Knowles in
Google Scholar
PubMed
Search for other papers by Emily Warmington in
Google Scholar
PubMed
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Search for other papers by Lisa M Shepherd in
Google Scholar
PubMed
Institute of Applied Health Research, University of Birmingham, Birmingham, UK
Search for other papers by Jonathan M Hazlehurst in
Google Scholar
PubMed
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Search for other papers by Anne de Bray in
Google Scholar
PubMed
Search for other papers by Helena Gleeson in
Google Scholar
PubMed
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Medical Research Council London Institute of Medical Sciences, London, UK
Search for other papers by Wiebke Arlt in
Google Scholar
PubMed
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Search for other papers by Alessandro Prete in
Google Scholar
PubMed
tumours, n (% of men) – 7 (23.3) Recurrent lower respiratory tract infections, n (%) – 2 (2.5) 0.242 Ehlers-Danlos syndrome, n (%) – 2 (2.5) 0.242 Charlson Comorbidity Index, n (%) 0 a 28 (34
Search for other papers by Agnieszka Adamska in
Google Scholar
PubMed
Search for other papers by Vitalii Ulychnyi in
Google Scholar
PubMed
Search for other papers by Katarzyna Siewko in
Google Scholar
PubMed
Search for other papers by Anna Popławska-Kita in
Google Scholar
PubMed
Search for other papers by Małgorzata Szelachowska in
Google Scholar
PubMed
Search for other papers by Marcin Adamski in
Google Scholar
PubMed
Search for other papers by Angelika Buczyńska in
Google Scholar
PubMed
Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
Search for other papers by Adam Jacek Krętowski in
Google Scholar
PubMed
-assay CV, 6.1%; inter-assay CV, 6.4%) using a dedicated Architect device (ABBOTT Diagnostics Division, IL, USA, 840607/R4). Statistical analysis The statistical analyses were performed using the Statistica 13.3 package (StatSoft, Cracow, Poland
Search for other papers by Emily Warmington in
Google Scholar
PubMed
Search for other papers by Gabrielle Smith in
Google Scholar
PubMed
Search for other papers by Vasileios Chortis in
Google Scholar
PubMed
Department of Neurosurgery, Technical University Munich (TMU), Munich, Germany
Search for other papers by Raimunde Liang in
Google Scholar
PubMed
Search for other papers by Juliane Lippert in
Google Scholar
PubMed
Search for other papers by Sonja Steinhauer in
Google Scholar
PubMed
Search for other papers by Laura-Sophie Landwehr in
Google Scholar
PubMed
Medizinische Klinik Und Poliklinik III, University Hospital Carl Gustav Carus, Dresden, Germany
Search for other papers by Constanze Hantel in
Google Scholar
PubMed
Search for other papers by Katja Kiseljak-Vassiliades in
Google Scholar
PubMed
Search for other papers by Margaret E Wierman in
Google Scholar
PubMed
Search for other papers by Barbara Altieri in
Google Scholar
PubMed
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by Paul A Foster in
Google Scholar
PubMed
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
Search for other papers by Cristina L Ronchi in
Google Scholar
PubMed
( 33 ) and more recently developed MUC-1 ( 34 ), CU-ACC1 and CU-ACC2 cells ( 35 ). NCI-H295R cells were cultured in Dulbecco’s modified eagle medium (DMEM)/F12, HEPES media) (Gibco, 11330032), supplemented with 2.5% Nu-Serum growth media supplement
Department of Analysis, Universidade Federal do Rio Grande do Sul (UFRGS), School of Pharmacy, Porto Alegre, RS, Brazil
Search for other papers by Simone Martins de Castro in
Google Scholar
PubMed
Search for other papers by Paloma Wiest in
Google Scholar
PubMed
Search for other papers by Poli Mara Spritzer in
Google Scholar
PubMed
Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
Department of Pediatrics, Universidade Federal do Rio Grande do Sul (UFRGS), Medical School, Porto Alegre, RS, Brazil
Search for other papers by Cristiane Kopacek in
Google Scholar
PubMed
hyperplasia in Turkey: a pilot study with 38,935 infants . Journal of Clinical Research in Pediatric Endocrinology 2019 11 13 – 23 . ( https://doi.org/10.4274/jcrpe.galenos.2018.2018.0117 ) 34 Pezzuti IL Barra CB Mantovani RM Januário JN & Silva
Search for other papers by Marta Fichna in
Google Scholar
PubMed
Search for other papers by Piotr P Małecki in
Google Scholar
PubMed
Search for other papers by Magdalena Żurawek in
Google Scholar
PubMed
Search for other papers by Katarzyna Furman in
Google Scholar
PubMed
Search for other papers by Bolesław Gębarski in
Google Scholar
PubMed
Search for other papers by Piotr Fichna in
Google Scholar
PubMed
Search for other papers by Marek Ruchała in
Google Scholar
PubMed
one of the studied antibodies found in 35 (18.7%) individuals, and more than one autoantibody detectable in the remaining 34 (18.2%) relatives ( Table 1 ). Thyroid autoantibodies, aTPO and aTg, were the most frequent, found in 25.1 and 17.1% relatives