Search for other papers by Rafaella Sales de Freitas in
Google Scholar
PubMed
Search for other papers by Thiago F A França in
Google Scholar
PubMed
Search for other papers by Sabine Pompeia in
Google Scholar
PubMed
such as DHEA and its main metabolite, DHEA sulphate (DHEA-S) ( 15 , 23 ). As this brief overview of the literature shows, the role of peripheral kisspeptin concentrations and pubertal development still needs much clarification. In humans, kisspeptin
Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
Search for other papers by Anna C van der Burgh in
Google Scholar
PubMed
Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
Search for other papers by Samer R Khan in
Google Scholar
PubMed
Search for other papers by Sebastian J C M M Neggers in
Google Scholar
PubMed
Search for other papers by Ewout J Hoorn in
Google Scholar
PubMed
Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
Search for other papers by Layal Chaker in
Google Scholar
PubMed
, mean ± SD or median (IQR) Total, n * Type of testosterone status measurement Measurement method Testosterone or DHEA-S, mean ± SD or median (IQR) Amiri M, Andrology , 2019 Adult men from district-13 of Tehran, Iran 1999–2001 42
Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Andre Madsen in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Lise Aksglaede in
Google Scholar
PubMed
, the LMS method accounts for local skewness (L), mean (M), and coefficient of variation (S) to establish continuous normal distributions with age ( 10 ). Supervised machine learning (ML) is an artificial intelligence method that is used for optimizing
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Elinor Chelsom Vogt in
Google Scholar
PubMed
Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
Search for other papers by Francisco Gómez Real in
Google Scholar
PubMed
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Eystein Sverre Husebye in
Google Scholar
PubMed
Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Sigridur Björnsdottir in
Google Scholar
PubMed
Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland
Search for other papers by Bryndis Benediktsdottir in
Google Scholar
PubMed
Search for other papers by Randi Jacobsen Bertelsen in
Google Scholar
PubMed
Search for other papers by Pascal Demoly in
Google Scholar
PubMed
Search for other papers by Karl Anders Franklin in
Google Scholar
PubMed
Search for other papers by Leire Sainz de Aja Gallastegui in
Google Scholar
PubMed
Search for other papers by Francisco Javier Callejas González in
Google Scholar
PubMed
Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
Search for other papers by Joachim Heinrich in
Google Scholar
PubMed
Search for other papers by Mathias Holm in
Google Scholar
PubMed
Search for other papers by Nils Oscar Jogi in
Google Scholar
PubMed
Search for other papers by Benedicte Leynaert in
Google Scholar
PubMed
Search for other papers by Eva Lindberg in
Google Scholar
PubMed
Search for other papers by Andrei Malinovschi in
Google Scholar
PubMed
Albacete Faculty of Medicine, Castilla-La Mancha University, Albacete, Spain
Search for other papers by Jesús Martínez-Moratalla in
Google Scholar
PubMed
Search for other papers by Raúl Godoy Mayoral in
Google Scholar
PubMed
Search for other papers by Anna Oudin in
Google Scholar
PubMed
Search for other papers by Antonio Pereira-Vega in
Google Scholar
PubMed
Search for other papers by Chantal Raherison Semjen in
Google Scholar
PubMed
The National Research Center for the Working Environment, Copenhagen, Denmark
Search for other papers by Vivi Schlünssen in
Google Scholar
PubMed
Search for other papers by Kai Triebner in
Google Scholar
PubMed
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Marianne Øksnes in
Google Scholar
PubMed
did not use HRT. FSH and luteinizing hormone (LH), were analyzed using ELISAs (Demeditec Diagnostics, Kiel, Germany), and the steroid hormones (17β-estradiol, estrone, progesterone, testosterone and DHEA-S) were measured using liquid chromatography
Search for other papers by Małgorzata Kałużna in
Google Scholar
PubMed
Search for other papers by Pola Kompf in
Google Scholar
PubMed
Search for other papers by Katarzyna Wachowiak-Ochmańska in
Google Scholar
PubMed
Search for other papers by Jerzy Moczko in
Google Scholar
PubMed
Search for other papers by Aleksandra Królczyk in
Google Scholar
PubMed
Search for other papers by Adam Janicki in
Google Scholar
PubMed
Search for other papers by Karol Szapel in
Google Scholar
PubMed
Search for other papers by Marian Grzymisławski in
Google Scholar
PubMed
Search for other papers by Marek Ruchała in
Google Scholar
PubMed
Search for other papers by Katarzyna Ziemnicka in
Google Scholar
PubMed
-stimulating hormone (FSH), luteinizing hormone (LH), DHEA sulfate (DHEAS), estradiol (E2), total testosterone (T), sex hormone-binding globulin (SHBG), anti-Müllerian hormone (AMH) and thyroid-stimulating hormone (TSH) measurements were performed using a Cobas 6000
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Search for other papers by Srdjan Pandurevic in
Google Scholar
PubMed
Unit of Gynecology and Obstetrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
Search for other papers by Ilaria Mancini in
Google Scholar
PubMed
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Search for other papers by Dimitri Mitselman in
Google Scholar
PubMed
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Search for other papers by Matteo Magagnoli in
Google Scholar
PubMed
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Search for other papers by Rita Teglia in
Google Scholar
PubMed
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Search for other papers by Roberta Fazzeri in
Google Scholar
PubMed
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Search for other papers by Paola Dionese in
Google Scholar
PubMed
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Search for other papers by Carolina Cecchetti in
Google Scholar
PubMed
Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Rome, Italy
Search for other papers by Massimiliamo Caprio in
Google Scholar
PubMed
Search for other papers by Costanzo Moretti in
Google Scholar
PubMed
Search for other papers by Justyna Sicinska in
Google Scholar
PubMed
Search for other papers by Alessandro Agostini in
Google Scholar
PubMed
Search for other papers by Domenica Gazineo in
Google Scholar
PubMed
Search for other papers by Lea Godino in
Google Scholar
PubMed
Medical Department Pronokal Group, Barcelona, Spain
Search for other papers by Ignacio Sajoux in
Google Scholar
PubMed
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Search for other papers by Flaminia Fanelli in
Google Scholar
PubMed
Unit of Gynecology and Obstetrics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
Search for other papers by Cristina M Meriggiola in
Google Scholar
PubMed
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Search for other papers by Uberto Pagotto in
Google Scholar
PubMed
Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
Search for other papers by Alessandra Gambineri in
Google Scholar
PubMed
was approved by the local Ethics Committee Area Vasta Emilia Centro-AVEC (26/2020/Sper/AOUBo) and preregistered at the ClinicalTrials.gov Protocol Registration and Results System of the U.S. National Library of Medicine (NCT04801173). Study
Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, China
Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
Search for other papers by Xiuhua Liao in
Google Scholar
PubMed
Search for other papers by Suqin Zhu in
Google Scholar
PubMed
Search for other papers by Shumin Qiu in
Google Scholar
PubMed
Search for other papers by Hua Cao in
Google Scholar
PubMed
Search for other papers by Wenwen Jiang in
Google Scholar
PubMed
Search for other papers by Huiling Xu in
Google Scholar
PubMed
Search for other papers by Yan Sun in
Google Scholar
PubMed
Fujian Maternal-Fetal Clinical Medicine Research Center, Fuzhou, China
Fujian Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
Search for other papers by Beihong Zheng in
Google Scholar
PubMed
were randomly divided into two groups: the model group ( n = 20) and the control group ( n = 20). Mice in the model group received daily subcutaneous injections of 0.1 mL of 0.6 mg/kg DHEA (androgen hormone) (Solarbio, Beijing, ID0220) dissolved in
Search for other papers by Hong Tang in
Google Scholar
PubMed
Search for other papers by Xiaomei Jiang in
Google Scholar
PubMed
Search for other papers by Yu Hua in
Google Scholar
PubMed
Search for other papers by Heyue Li in
Google Scholar
PubMed
Search for other papers by Chunlan Zhu in
Google Scholar
PubMed
Search for other papers by Xiaobai Hao in
Google Scholar
PubMed
Search for other papers by Minhui Yi in
Google Scholar
PubMed
Search for other papers by Linxia Li in
Google Scholar
PubMed
People’s Hospital (item number: 2021-AR-059). Adult female C57BL/6J mice were housed withaccess to food and water ad libitum . The PCOS mouse model was established as described previously ( 18 ). In brief, female C57BL/6J mice (4 weeks old) were
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Hans Valdemar López Krabbe in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jørgen Holm Petersen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Fertility, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Search for other papers by Louise Laub Asserhøj in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Peter Christiansen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Rikke Beck Jensen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Line Hartvig Cleemann in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Casper P Hagen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Lærke Priskorn in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Niels Jørgensen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Katharina M Main in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Lise Aksglaede in
Google Scholar
PubMed
concentration of LH exceeds +2 s.d. . Standard treatment is either peroral testosterone undecanoate (TU) (Testosterone ‘Paranova’; (Paranova Danmark A/S, Herlev, Denmark)) or transdermal testosterone (Tostran 2%; Kyowa Kirin, Holland), with dose titration
Laboratory of Biotechnology, Environment, Food, and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
Search for other papers by Mohamed Hssaini in
Google Scholar
PubMed
Search for other papers by Sana Abourazzak in
Google Scholar
PubMed
Search for other papers by Ihsane El Otmani in
Google Scholar
PubMed
Search for other papers by Mohamed Ahakoud in
Google Scholar
PubMed
Search for other papers by Amina Ameli in
Google Scholar
PubMed
Search for other papers by Laila Bouguenouch in
Google Scholar
PubMed
Search for other papers by Hicham Bekkari in
Google Scholar
PubMed
pediatric endocrinology department or during karyotype analysis at the medical genetics laboratory. All parents or legal guardians agreed to take part in this study. Detailed clinical data were obtained from the patient’s medical records, including age