Search Results
Search for other papers by Eleftherios E Deiktakis in
Google Scholar
PubMed
Search for other papers by Eleftheria Ieronymaki in
Google Scholar
PubMed
Search for other papers by Peter Zarén in
Google Scholar
PubMed
Search for other papers by Agnes Hagsund in
Google Scholar
PubMed
Search for other papers by Elin Wirestrand in
Google Scholar
PubMed
Search for other papers by Johan Malm in
Google Scholar
PubMed
Search for other papers by Christos Tsatsanis in
Google Scholar
PubMed
Imperial College London, Institute of Reproductive and Developmental Biology, London, UK
Search for other papers by Ilpo T Huhtaniemi in
Google Scholar
PubMed
Malmö University Hospital, Reproductive Medicine Center, Malmö, Sweden
Search for other papers by Aleksander Giwercman in
Google Scholar
PubMed
Search for other papers by Yvonne Lundberg Giwercman in
Google Scholar
PubMed
spermatozoa. Possibly, and perhaps even likely, prostate cancer cells utilize the same process for growth and progression to an incurable disease, but in healthy men, we do not find evidence for this to be the situation. The response of inhibin B levels to
Search for other papers by Anna Gorbacheva in
Google Scholar
PubMed
Search for other papers by Anna Eremkina in
Google Scholar
PubMed
Search for other papers by Daria Goliusova in
Google Scholar
PubMed
Search for other papers by Julia Krupinova in
Google Scholar
PubMed
Search for other papers by Natalia Mokrysheva in
Google Scholar
PubMed
proliferation of osteoid cells, but the experiments proving that Cdkn1b is indeed involved in menin function in bone are missing. Menin and homeobox genes The nature of interaction between menin and homeobox genes (Hox genes, highly concerned DNA
Search for other papers by Hélène Singeisen in
Google Scholar
PubMed
Search for other papers by Mariko Melanie Renzulli in
Google Scholar
PubMed
Search for other papers by Vojtech Pavlicek in
Google Scholar
PubMed
Search for other papers by Pascal Probst in
Google Scholar
PubMed
Search for other papers by Fabian Hauswirth in
Google Scholar
PubMed
Search for other papers by Markus K Muller in
Google Scholar
PubMed
Search for other papers by Magdalene Adamczyk in
Google Scholar
PubMed
Search for other papers by Achim Weber in
Google Scholar
PubMed
Search for other papers by Reto Martin Kaderli in
Google Scholar
PubMed
Search for other papers by Pietro Renzulli in
Google Scholar
PubMed
the cyclin-dependent kinase (CDK) inhibitor 1b gene ( CDKN1B ), a gene coding for the nuclear protein p27 kip1 , commonly referred to as p27 or KIP1. It is a putative tumor suppressor gene regulating cell cycle progression, notably the progression from
Search for other papers by Anela Blažević in
Google Scholar
PubMed
Search for other papers by Anand M Iyer in
Google Scholar
PubMed
Search for other papers by Marie-Louise F van Velthuysen in
Google Scholar
PubMed
Search for other papers by Johannes Hofland in
Google Scholar
PubMed
Search for other papers by Peter M van Koestveld in
Google Scholar
PubMed
Search for other papers by Gaston J H Franssen in
Google Scholar
PubMed
Search for other papers by Richard A Feelders in
Google Scholar
PubMed
Search for other papers by Marina Zajec in
Google Scholar
PubMed
Search for other papers by Theo M Luider in
Google Scholar
PubMed
Search for other papers by Wouter W de Herder in
Google Scholar
PubMed
Search for other papers by Leo J Hofland in
Google Scholar
PubMed
neuroendocrine tumors. Next, we compared patients with and without mesenteric fibrosis (MF vs non-MF) ( Fig. 2B ). In primary tumors, patients with MF had higher MAO-A staining score in tumor cells (median 33.5 I/A vs 25.8 I/A in non-MF, P = 0.03). On
Search for other papers by Enrique Pedernera in
Google Scholar
PubMed
Search for other papers by Flavia Morales-Vásquez in
Google Scholar
PubMed
Search for other papers by María J Gómora in
Google Scholar
PubMed
Search for other papers by Miguel A Almaraz in
Google Scholar
PubMed
Universidad La Salle, Posgrado de la Facultad de Ciencias Químicas, Ciudad de México, México
Search for other papers by Esteban Mena in
Google Scholar
PubMed
Search for other papers by Delia Pérez-Montiel in
Google Scholar
PubMed
Search for other papers by Elizabeth Rendon in
Google Scholar
PubMed
Search for other papers by Horacio López-Basave in
Google Scholar
PubMed
Search for other papers by Juan Maldonado-Cubas in
Google Scholar
PubMed
Search for other papers by Carmen Méndez in
Google Scholar
PubMed
four histological types: serous, endometrioid, mucinous, and clear cells. Serous tumors are the most frequent and are classified as: borderline tumor (BT), low-grade serous carcinoma (LGSC), and high-grade serous carcinoma (HGSC). Endometrioid
Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
Garvan Institute of Medical Research, New South Wales, Australia
School of Medical Sciences, University of New South Wales, New South Wales, Australia
Search for other papers by Vita Birzniece in
Google Scholar
PubMed
Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
Department of Diabetes and Endocrinology, Westmead Hospital, New South Wales, Australia
Search for other papers by Teresa Lam in
Google Scholar
PubMed
Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
Search for other papers by Mark McLean in
Google Scholar
PubMed
Search for other papers by Navneeta Reddy in
Google Scholar
PubMed
Department of Diabetes and Endocrinology, Blacktown Hospital, New South Wales, Australia
Search for other papers by Haleh Shahidipour in
Google Scholar
PubMed
Faculty of Medicine, Health and Human Sciences, Macquarie University, New South Wales, Australia
Crown Princess Mary Cancer Centre, Westmead Hospital, New South Wales, Australia
Search for other papers by Amy Hayden in
Google Scholar
PubMed
Search for other papers by Howard Gurney in
Google Scholar
PubMed
Search for other papers by Glenn Stone in
Google Scholar
PubMed
Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
Steno Diabetes Center Odense, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
Search for other papers by Rikke Hjortebjerg in
Google Scholar
PubMed
Endocrine Research Unit, Department of Endocrinology, Odense University Hospital & Department of Clinical Research, Faculty of Health, University of Southern Denmark, Odense, Denmark
Search for other papers by Jan Frystyk in
Google Scholar
PubMed
inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells . BMC Cancer 2013 13 235. ( https://doi.org/10.1186/1471-2407-13-235 ) 14 Clements A Gao B Yeap SHO Wong MKY Ali SS Gurney H . Metformin
Search for other papers by Malgorzata Fuksiewicz in
Google Scholar
PubMed
Search for other papers by Maria Kowalska in
Google Scholar
PubMed
Search for other papers by Agnieszka Kolasinska-Cwikla in
Google Scholar
PubMed
Search for other papers by Beata Kotowicz in
Google Scholar
PubMed
approximately 24 h. NSE is found in the cytoplasm of neurons and neuroendocrine cells. Mechanisms leading to the destruction of these cells cause an increase in NSE concentration in body fluids. Hence, numerous studies have evaluated its usefulness in predicting
Search for other papers by Xiaoya Zheng in
Google Scholar
PubMed
Search for other papers by Shanshan Yu in
Google Scholar
PubMed
Search for other papers by Jian Long in
Google Scholar
PubMed
Search for other papers by Qiang Wei in
Google Scholar
PubMed
Search for other papers by Liping Liu in
Google Scholar
PubMed
Search for other papers by Chun Liu in
Google Scholar
PubMed
Search for other papers by Wei Ren in
Google Scholar
PubMed
Representative histological figures of diffuse sclerosing variant of papillary thyroid carcinoma (DSVPTC) and thyroid diffuse large B-cell lymphoma (DLBCL). (A) Histopathology of DSVPTC showing the carcinoma had numerous psammoma bodies, papillary structures and
Search for other papers by Arnaud Lagarde in
Google Scholar
PubMed
Search for other papers by Grégory Mougel in
Google Scholar
PubMed
Search for other papers by Lucie Coppin in
Google Scholar
PubMed
Search for other papers by Magalie Haissaguerre in
Google Scholar
PubMed
Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, Lille, France
Search for other papers by Lauriane Le Collen in
Google Scholar
PubMed
Search for other papers by Amira Mohamed in
Google Scholar
PubMed
Search for other papers by Marc Klein in
Google Scholar
PubMed
Univ. Lille, Inserm, CHU Lille, U1286 – Infinite – Institute for Translational Research in Inflammation, Lille, France
Search for other papers by Marie-Françoise Odou in
Google Scholar
PubMed
Search for other papers by Antoine Tabarin in
Google Scholar
PubMed
Search for other papers by Hedia Brixi in
Google Scholar
PubMed
Search for other papers by Thomas Cuny in
Google Scholar
PubMed
Search for other papers by Brigitte Delemer in
Google Scholar
PubMed
Search for other papers by Anne Barlier in
Google Scholar
PubMed
Search for other papers by Pauline Romanet in
Google Scholar
PubMed
cases. Mosaicism has been described in several inherited tumor syndromes and corresponds to the spontaneous acquisition of a genetic variant during cell division during post-zygotic embryonic development ( 7 , 8 , 9 , 10 , 11 ). Mosaicism thus
Center for Neuroendocrine Tumors, ENETS Center of Excellence, Netherlands Cancer Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for other papers by Mark J C van Treijen in
Google Scholar
PubMed
Department of Clinical Chemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
Search for other papers by Catharina M Korse in
Google Scholar
PubMed
Department of Gastroenterology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
Search for other papers by Wieke H Verbeek in
Google Scholar
PubMed
Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
Search for other papers by Margot E T Tesselaar in
Google Scholar
PubMed
Center for Neuroendocrine Tumors, ENETS Center of Excellence, Netherlands Cancer Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for other papers by Gerlof D Valk in
Google Scholar
PubMed
Introduction Neuroendocrine tumors (NETs) are malignant neoplasms originating from neuroendocrine cells and can occur throughout the body. Gastroenteropancreatic NETs (GEPNETs) are the most prevalent subgroup. Both incidence and survival have