Search Results
Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
Search for other papers by Wolfgang Högler in
Google Scholar
PubMed
Search for other papers by Agnès Linglart in
Google Scholar
PubMed
Search for other papers by Anna Petryk in
Google Scholar
PubMed
Search for other papers by Priya S Kishnani in
Google Scholar
PubMed
Search for other papers by Lothar Seefried in
Google Scholar
PubMed
Search for other papers by Shona Fang in
Google Scholar
PubMed
Search for other papers by Cheryl Rockman-Greenberg in
Google Scholar
PubMed
Search for other papers by Keiichi Ozono in
Google Scholar
PubMed
Search for other papers by Kathryn Dahir in
Google Scholar
PubMed
Search for other papers by Gabriel Ángel Martos-Moreno in
Google Scholar
PubMed
up to December 7, 2020, were included in this analysis. As previously described, all aspects of the Global HPP Registry are sponsored by Alexion, AstraZeneca Rare Disease (Boston, MA, USA), and the registry is monitored by a scientific advisory
Search for other papers by Violeta Iotova in
Google Scholar
PubMed
Search for other papers by Camilla Schalin-Jäntti in
Google Scholar
PubMed
Search for other papers by Charlotte Van Beuzekom in
Google Scholar
PubMed
Search for other papers by Petra Bruegmann in
Google Scholar
PubMed
Search for other papers by Manuela Broesamle in
Google Scholar
PubMed
Search for other papers by Olaf Hiort in
Google Scholar
PubMed
Search for other papers by Alberto M Pereira in
Google Scholar
PubMed
Introduction The European Reference Network on Rare Endocrine Conditions (Endo-ERN) was sufficiently installed in 2017 together with 23 other European reference networks (ERNs) for rare diseases (RDs). The organization and governance of Endo
Department of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Search for other papers by Stamatina Ioakim in
Google Scholar
PubMed
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Search for other papers by Silvia Andonova in
Google Scholar
PubMed
Search for other papers by Magdalena Avbelj-Stefanija in
Google Scholar
PubMed
Search for other papers by Federico Baronio in
Google Scholar
PubMed
Search for other papers by Jerome Bouligand in
Google Scholar
PubMed
Search for other papers by Hennie T Bruggenwirth in
Google Scholar
PubMed
Search for other papers by Justin H Davies in
Google Scholar
PubMed
Search for other papers by Elfride De Baere in
Google Scholar
PubMed
Search for other papers by Iveta Dzivite-Krisane in
Google Scholar
PubMed
Search for other papers by Paula Fernandez-Alvarez in
Google Scholar
PubMed
Search for other papers by Alexander Gheldof in
Google Scholar
PubMed
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Search for other papers by Claudia Giavoli in
Google Scholar
PubMed
Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Search for other papers by Olaf Hiort in
Google Scholar
PubMed
Search for other papers by Paul-Martin Holterhus in
Google Scholar
PubMed
Search for other papers by Anders Juul in
Google Scholar
PubMed
Search for other papers by Csilla Krausz in
Google Scholar
PubMed
Search for other papers by Kristina Lagerstedt-Robinson in
Google Scholar
PubMed
West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, United Kingdom
Search for other papers by Ruth McGowan in
Google Scholar
PubMed
Search for other papers by Uta Neumann in
Google Scholar
PubMed
Search for other papers by Antonio Novelli in
Google Scholar
PubMed
Search for other papers by Xavier Peyrassol in
Google Scholar
PubMed
Search for other papers by Leonidas A Phylactou in
Google Scholar
PubMed
Search for other papers by Julia Rohayem in
Google Scholar
PubMed
Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Search for other papers by Dineke Westra in
Google Scholar
PubMed
Search for other papers by Valeria Vezzoli in
Google Scholar
PubMed
Search for other papers by Raffaella Rossetti in
Google Scholar
PubMed
relied on NGS technology but chose not to participate for other reasons. In conclusion, these data illustrate how clinical genetic diagnostics in the field of rare diseases, more specifically unexplained disorders of SDM, are currently performed across
Search for other papers by Danielle Christine Maria van der Kaay in
Google Scholar
PubMed
Search for other papers by Anne Rochtus in
Google Scholar
PubMed
Search for other papers by Gerhard Binder in
Google Scholar
PubMed
Search for other papers by Ingo Kurth in
Google Scholar
PubMed
Search for other papers by Dirk Prawitt in
Google Scholar
PubMed
Search for other papers by Irène Netchine in
Google Scholar
PubMed
Department of Endocrinology at Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Gudmundur Johannsson in
Google Scholar
PubMed
Search for other papers by Anita C S Hokken-Koelega in
Google Scholar
PubMed
Search for other papers by Miriam Elbracht in
Google Scholar
PubMed
Search for other papers by Thomas Eggermann in
Google Scholar
PubMed
. Genetics in Medicine 2017 19 1055 – 1063 . ( https://doi.org/10.1038/gim.2017.1 ) 8 Wright CF FitzPatrick DR Firth HV . Paediatric genomics: diagnosing rare disease in children . Nature Reviews: Genetics 2018 19 325. ( https://doi.org/10.1038/nrg
Search for other papers by Christine Poitou in
Google Scholar
PubMed
Search for other papers by Anthony Holland in
Google Scholar
PubMed
Search for other papers by Charlotte Höybye in
Google Scholar
PubMed
Search for other papers by Laura C G de Graaff in
Google Scholar
PubMed
Search for other papers by Sandrine Bottius in
Google Scholar
PubMed
Search for other papers by Berit Otterlei in
Google Scholar
PubMed
Search for other papers by Maithé Tauber in
Google Scholar
PubMed
-Willi syndrome . Orphanet Journal of Rare Diseases 2017 12 118. ( https://doi.org/10.1186/s13023-017-0673-6 ) 2 Tauber M Hoybye C . Endocrine disorders in Prader-Willi syndrome: a model to understand and treat hypothalamic dysfunction . Lancet. Diabetes
Search for other papers by Lukas Plachy in
Google Scholar
PubMed
Search for other papers by Lenka Petruzelkova in
Google Scholar
PubMed
Search for other papers by Petra Dusatkova in
Google Scholar
PubMed
Search for other papers by Klara Maratova in
Google Scholar
PubMed
Search for other papers by Dana Zemkova in
Google Scholar
PubMed
Search for other papers by Lenka Elblova in
Google Scholar
PubMed
Search for other papers by Vit Neuman in
Google Scholar
PubMed
Search for other papers by Stanislava Kolouskova in
Google Scholar
PubMed
Search for other papers by Barbora Obermannova in
Google Scholar
PubMed
Search for other papers by Marta Snajderova in
Google Scholar
PubMed
Search for other papers by Zdenek Sumnik in
Google Scholar
PubMed
Search for other papers by Jan Lebl in
Google Scholar
PubMed
Search for other papers by Stepanka Pruhova in
Google Scholar
PubMed
.1038/nrendo.2016.138 ) 34 Van Der BI . Noonan syndrome . Orphanet Journal of Rare Diseases 2007 2 1 . 35 Gibson BG & Briggs MD . The aggrecanopathies; An evolving phenotypic spectrum of human genetic skeletal diseases . Orphanet Journal of Rare
Search for other papers by Nathalia G B P Ferreira in
Google Scholar
PubMed
Search for other papers by Joao L O Madeira in
Google Scholar
PubMed
Search for other papers by Peter Gergics in
Google Scholar
PubMed
Search for other papers by Renata Kertsz in
Google Scholar
PubMed
Search for other papers by Juliana M Marques in
Google Scholar
PubMed
Search for other papers by Nicholas S S Trigueiro in
Google Scholar
PubMed
Search for other papers by Anna Flavia Figueredo Benedetti in
Google Scholar
PubMed
Search for other papers by Bruna V Azevedo in
Google Scholar
PubMed
Universidade de São Paulo, Zebrafish Facility, São Paulo, São Paulo, Brazil
Search for other papers by Bianca H V Fernandes in
Google Scholar
PubMed
Search for other papers by Debora D Bissegatto in
Google Scholar
PubMed
Search for other papers by Isabela P Biscotto in
Google Scholar
PubMed
Search for other papers by Qing Fang in
Google Scholar
PubMed
Search for other papers by Qianyi Ma in
Google Scholar
PubMed
Search for other papers by Asye B Ozel in
Google Scholar
PubMed
Search for other papers by Jun Li in
Google Scholar
PubMed
Search for other papers by Sally A Camper in
Google Scholar
PubMed
Search for other papers by Alexander A L Jorge in
Google Scholar
PubMed
Search for other papers by Berenice B Mendonça in
Google Scholar
PubMed
Search for other papers by Ivo J P Arnhold in
Google Scholar
PubMed
Search for other papers by Luciani R Carvalho in
Google Scholar
PubMed
MNP de Arruda VYN , Diagnostic power and clinical impact of exome sequencing in a cohort of 500 patients with rare diseases . American Journal of Medical Genetics, Part C 2020 184 955 – 964 .. ( https://doi.org/10.1002/ajmg.c.31860 ) 12 Miller
Search for other papers by Yijun Tang in
Google Scholar
PubMed
Search for other papers by Yao Chen in
Google Scholar
PubMed
Search for other papers by Jiayi Wang in
Google Scholar
PubMed
Search for other papers by Qianwen Zhang in
Google Scholar
PubMed
Search for other papers by Yirou Wang in
Google Scholar
PubMed
Search for other papers by Yufei Xu in
Google Scholar
PubMed
Search for other papers by Xin Li in
Google Scholar
PubMed
Search for other papers by Jian Wang in
Google Scholar
PubMed
Search for other papers by Xiumin Wang in
Google Scholar
PubMed
that could be construed as potential conflicts of interest. Funding This work was supported by the National Nature Science Foundation of China (82170910), Shanghai Clinical Medical Research Center for Children’s Rare Diseases (20MC1920400