Search for other papers by Annelies van’t Westeinde in
Google Scholar
PubMed
Search for other papers by Leif Karlsson in
Google Scholar
PubMed
Search for other papers by Valeria Messina in
Google Scholar
PubMed
Search for other papers by Lena Wallensteen in
Google Scholar
PubMed
Search for other papers by Manuela Brösamle in
Google Scholar
PubMed
Search for other papers by Giorgio Dal Maso in
Google Scholar
PubMed
Search for other papers by Alessandro Lazzerini in
Google Scholar
PubMed
Search for other papers by Jette Kristensen in
Google Scholar
PubMed
Search for other papers by Diana Kwast in
Google Scholar
PubMed
Search for other papers by Lea Tschaidse in
Google Scholar
PubMed
Search for other papers by Matthias K Auer in
Google Scholar
PubMed
Search for other papers by Hanna F Nowotny in
Google Scholar
PubMed
Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Search for other papers by Svetlana Lajic in
Google Scholar
PubMed
within long-term follow-up study designs. Epigenetic effects One of the mechanisms through which early life exposure can have long-lasting effects is epigenetic changes such as altering DNA methylation and histone modifications. DEX exposure may
Search for other papers by Wenhao Lin in
Google Scholar
PubMed
Search for other papers by Jun Dai in
Google Scholar
PubMed
Search for other papers by Jialing Xie in
Google Scholar
PubMed
Search for other papers by Jiacheng Liu in
Google Scholar
PubMed
Search for other papers by Fukang Sun in
Google Scholar
PubMed
Search for other papers by Xin Huang in
Google Scholar
PubMed
Search for other papers by Wei He in
Google Scholar
PubMed
Search for other papers by Chen Fang in
Google Scholar
PubMed
Search for other papers by Juping Zhao in
Google Scholar
PubMed
Search for other papers by Danfeng Xu in
Google Scholar
PubMed
DR Lerario AM Else T Mukherjee B Almeida MQ Vinco M Rege J Mariani BMP Zerbini MCN Mendonca BB Targeted assessment of G0S2 methylation identifies a rapidly recurrent, routinely fatal molecular subtype of adrenocortical carcinoma
Search for other papers by Richard W Carroll in
Google Scholar
PubMed
Department of Medicine, University of Otago, Wellington, New Zealand
Search for other papers by Brian Corley in
Google Scholar
PubMed
Search for other papers by Joe Feltham in
Google Scholar
PubMed
Department of Medicine, University of Otago, Wellington, New Zealand
Search for other papers by Patricia Whitfield in
Google Scholar
PubMed
Search for other papers by William Park in
Google Scholar
PubMed
Search for other papers by Rowena Howard in
Google Scholar
PubMed
Search for other papers by Melissa Yssel in
Google Scholar
PubMed
Search for other papers by Ian Phillips in
Google Scholar
PubMed
Department of General Surgery, Wellington Regional Hospital, New Zealand
Search for other papers by Simon Harper in
Google Scholar
PubMed
Department of Medicine, Monash University, Clayton, Victoria, Australia
Search for other papers by Jun Yang in
Google Scholar
PubMed
dopamine-β-monooxygenase action on dopamine ( 27 ). Norepinephrine is converted by methylation to epinephrine, a reaction catalyzed by the enzyme phenylethanolamine N -methyltransferase (PNMT). As this enzyme is expressed primarily in the adrenal medulla