Search Results
Search for other papers by Yijun Tang in
Google Scholar
PubMed
Search for other papers by Yao Chen in
Google Scholar
PubMed
Search for other papers by Jiayi Wang in
Google Scholar
PubMed
Search for other papers by Qianwen Zhang in
Google Scholar
PubMed
Search for other papers by Yirou Wang in
Google Scholar
PubMed
Search for other papers by Yufei Xu in
Google Scholar
PubMed
Search for other papers by Xin Li in
Google Scholar
PubMed
Search for other papers by Jian Wang in
Google Scholar
PubMed
Search for other papers by Xiumin Wang in
Google Scholar
PubMed
Introduction Disorder of sex development (DSD) is a general term for diseases with inconsistencies between chromosomal karyotypes, external genitalia, and gonadal development ( 1 ). According to the DSD etiology classification defined in the
Department of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Search for other papers by Stamatina Ioakim in
Google Scholar
PubMed
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Search for other papers by Silvia Andonova in
Google Scholar
PubMed
Search for other papers by Magdalena Avbelj-Stefanija in
Google Scholar
PubMed
Search for other papers by Federico Baronio in
Google Scholar
PubMed
Search for other papers by Jerome Bouligand in
Google Scholar
PubMed
Search for other papers by Hennie T Bruggenwirth in
Google Scholar
PubMed
Search for other papers by Justin H Davies in
Google Scholar
PubMed
Search for other papers by Elfride De Baere in
Google Scholar
PubMed
Search for other papers by Iveta Dzivite-Krisane in
Google Scholar
PubMed
Search for other papers by Paula Fernandez-Alvarez in
Google Scholar
PubMed
Search for other papers by Alexander Gheldof in
Google Scholar
PubMed
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Search for other papers by Claudia Giavoli in
Google Scholar
PubMed
Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Search for other papers by Olaf Hiort in
Google Scholar
PubMed
Search for other papers by Paul-Martin Holterhus in
Google Scholar
PubMed
Search for other papers by Anders Juul in
Google Scholar
PubMed
Search for other papers by Csilla Krausz in
Google Scholar
PubMed
Search for other papers by Kristina Lagerstedt-Robinson in
Google Scholar
PubMed
West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, United Kingdom
Search for other papers by Ruth McGowan in
Google Scholar
PubMed
Search for other papers by Uta Neumann in
Google Scholar
PubMed
Search for other papers by Antonio Novelli in
Google Scholar
PubMed
Search for other papers by Xavier Peyrassol in
Google Scholar
PubMed
Search for other papers by Leonidas A Phylactou in
Google Scholar
PubMed
Search for other papers by Julia Rohayem in
Google Scholar
PubMed
Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Search for other papers by Dineke Westra in
Google Scholar
PubMed
Search for other papers by Valeria Vezzoli in
Google Scholar
PubMed
Search for other papers by Raffaella Rossetti in
Google Scholar
PubMed
Differences of sex development and maturation (SDM) represent a heterogeneous puzzle of rare conditions with a large genetic component whose management and treatment could be improved by an accurate classification of underlying molecular conditions, and next-generation sequencing (NGS) should represent the most appropriate approach. Therefore, we conducted a survey dedicated to the use and potential outcomes of NGS for SDM disorders diagnosis among the 53 health care providers (HCP) of the European Reference Network for rare endocrine conditions. The response rate was 49% with a total of 26 HCPs from 13 countries. All HCPs, except 1, performed NGS investigations for SDM disorders on 6720 patients, 3764 (56%) with differences of sex development (DSD), including 811 unexplained primary ovarian insufficiency, and 2956 (44%) with congenital hypogonadotropic hypogonadism (CHH). The approaches varied from targeted analysis of custom gene panels (range: 11–490 genes) in 81.5% of cases or whole exome sequencing with the extraction of a virtual panel in the remaining cases. These analyses were performed for diagnostic purposes in 21 HCPs, supported by the National Health Systems in 16 cases. The likelihood of finding a variant ranged between 7 and 60%, mainly depending upon the number of analysed genes or criteria used for reporting, most HCPs also reporting variants of uncertain significance. These data illustrate the status of genetic diagnosis of DSD and CHH across Europe. In most countries, these analyses are performed for diagnostic purposes, yielding highly variable results, thus suggesting the need for harmonization and general improvements of NGS approaches.
Search for other papers by A Bergougnoux in
Google Scholar
PubMed
INSERM Unité 1203 (DEFE), Université de Montpellier, Montpellier, France
Search for other papers by L Gaspari in
Google Scholar
PubMed
Search for other papers by M Soleirol in
Google Scholar
PubMed
Search for other papers by N Servant in
Google Scholar
PubMed
Search for other papers by S Soskin in
Google Scholar
PubMed
Search for other papers by S Rossignol in
Google Scholar
PubMed
Search for other papers by K Wagner-Mahler in
Google Scholar
PubMed
Search for other papers by J Bertherat in
Google Scholar
PubMed
Search for other papers by C Sultan in
Google Scholar
PubMed
Search for other papers by N Kalfa in
Google Scholar
PubMed
Département d'Endocrinologie et de Gynécologie Pédiatrique, Hôpital Arnaud de Villeneuve, Université de Montpellier, Montpellier, France
INSERM Unité 1203 (DEFE), Université de Montpellier, Montpellier, France
Search for other papers by F Paris in
Google Scholar
PubMed
are useful to identify the hyperandrogenism cause. Independently of the presence or not of Müllerian structures, karyotyping must also be performed to exclude a 46,XY disorder of sex development (DSD) resulting in sex reversal. Indeed, in the absence
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Marie Lindhardt Ljubicic in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Margit Bistrup Fischer in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Emmie N Upners in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Alexander S Busch in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Katharina M Main in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anna-Maria Andersson in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Casper P Hagen in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
Nordenström A Houk CP Ahmed SF Auchus R Baratz A Baratz Dalke K Liao LM Lin-Su K Looijenga LHJ Global disorders of sex development update since 2006: perceptions, approach and care . Hormone Research in Paediatrics 2016 85 158 – 180