Search Results
Search for other papers by Britt J van Keulen in
Google Scholar
PubMed
Search for other papers by Conor V Dolan in
Google Scholar
PubMed
Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Search for other papers by Ruth Andrew in
Google Scholar
PubMed
Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
Search for other papers by Brian R Walker in
Google Scholar
PubMed
Search for other papers by Hilleke Hulshoff Pol in
Google Scholar
PubMed
Search for other papers by Dorret I Boomsma in
Google Scholar
PubMed
Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
, there are no studies that have reported on HPA-axis activity across pubertal development. HPA-axis activity is determined by the net effect of cortisol production and metabolism. Cortisol is metabolized by various enzymes ( Fig. 1 ). The A
Department of Pediatrics, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
Search for other papers by Letícia Ribeiro Oliveira in
Google Scholar
PubMed
Search for other papers by Carlos Alberto Longui in
Google Scholar
PubMed
Department of Pediatrics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Search for other papers by Guilherme Guaragna-Filho in
Google Scholar
PubMed
Poison Control Center, FCM, UNICAMP, Campinas, Sao Paulo, Brazil
Search for other papers by José Luiz Costa in
Google Scholar
PubMed
Search for other papers by Rafael Lanaro in
Google Scholar
PubMed
Search for other papers by David Antônio Silva in
Google Scholar
PubMed
Search for other papers by Maria Izabel Chiamolera in
Google Scholar
PubMed
Laboratory of Human Molecular Genetics, Center for Molecular Biology and Genetics Engineering (CBMEG), UNICAMP, Campinas, Sao Paulo, Brazil
Search for other papers by Maricilda Palandi de Mello in
Google Scholar
PubMed
Search for other papers by André Moreno Morcillo in
Google Scholar
PubMed
Department of Medical Genetics and Genomic Medicine, FCM, UNICAMP, Campinas, Sao Paulo, Brazil
Search for other papers by Andrea Trevas Maciel-Guerra in
Google Scholar
PubMed
Department of Pediatrics, FCM, UNICAMP, Campinas, Sao Paulo, Brazil
Search for other papers by Gil Guerra-Junior in
Google Scholar
PubMed
Introduction The determination of steroid hormone concentration, which is part of the initial approach in the diagnosis of disorders of sex development (DSD), is one of the challenges in pediatric endocrinology ( 1 , 2 , 3 ). Based on the
Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, de Boelelaan, Amsterdam, The Netherlands
Search for other papers by Britt J van Keulen in
Google Scholar
PubMed
Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, de Boelelaan, Amsterdam, The Netherlands
Search for other papers by Michelle Romijn in
Google Scholar
PubMed
Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Search for other papers by Marita de Waard in
Google Scholar
PubMed
Search for other papers by Michaela F Hartmann in
Google Scholar
PubMed
Search for other papers by Johannes B van Goudoever in
Google Scholar
PubMed
Search for other papers by Stefan A Wudy in
Google Scholar
PubMed
Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, de Boelelaan, Amsterdam, The Netherlands
Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
seems warranted. Secondly, urine samples were only collected at 10 days post-partum. Preferably, urine samples would have been collected at multiple days during the first weeks of life for a more precise assessment of HPA axis development. Thirdly, we
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Maki Igarashi in
Google Scholar
PubMed
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Tadayuki Ayabe in
Google Scholar
PubMed
Search for other papers by Kiwako Yamamoto-Hanada in
Google Scholar
PubMed
Search for other papers by Keiko Matsubara in
Google Scholar
PubMed
Search for other papers by Hatoko Sasaki in
Google Scholar
PubMed
Search for other papers by Mayako Saito-Abe in
Google Scholar
PubMed
Search for other papers by Miori Sato in
Google Scholar
PubMed
Search for other papers by Nathan Mise in
Google Scholar
PubMed
Search for other papers by Akihiko Ikegami in
Google Scholar
PubMed
Search for other papers by Masayuki Shimono in
Google Scholar
PubMed
Search for other papers by Reiko Suga in
Google Scholar
PubMed
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Search for other papers by Shouichi Ohga in
Google Scholar
PubMed
Research Center for Environment and Developmental Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
Search for other papers by Masafumi Sanefuji in
Google Scholar
PubMed
Search for other papers by Masako Oda in
Google Scholar
PubMed
Search for other papers by Hiroshi Mitsubuchi in
Google Scholar
PubMed
Search for other papers by Takehiro Michikawa in
Google Scholar
PubMed
Search for other papers by Shin Yamazaki in
Google Scholar
PubMed
Search for other papers by Shoji Nakayama in
Google Scholar
PubMed
Search for other papers by Yukihiro Ohya in
Google Scholar
PubMed
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
Search for other papers by Maki Fukami in
Google Scholar
PubMed
Objective
Ultra-sensitive hormone assays have detected slight sex differences in blood estradiol (E2) levels in young children before adrenarche. However, the origin of circulating E2 in these individuals remains unknown. This study aimed to clarify how E2 is produced in young girls before adrenarche.
Design
This is a satellite project of the Japan Environment and Children’s Study organized by the National Institute for Environmental Studies.
Methods
We collected blood samples from healthy 6-year-old Japanese children (79 boys and 71 girls). Hormone measurements and data analysis were performed in the National Institute for Environmental Studies and the Medical Support Center of the Japan Environment and Children’s Study, respectively.
Results
E2 and follicle stimulating hormone (FSH) levels were significantly higher in girls than in boys, while dehydroepiandrosterone sulfate (DHEA-S) and testosterone levels were comparable between the two groups. Girls showed significantly higher E2/testosterone ratios than boys. In children of both sexes, a correlation was observed between E2 and testosterone levels and between testosterone and DHEA-S levels. Moreover, E2 levels were correlated with FSH levels only in girls.
Conclusions
The results indicate that in 6-year-old girls, circulating E2 is produced primarily in the ovary from adrenal steroids through FSH-induced aromatase upregulation. This study provides evidence that female-dominant E2 production starts several months or years before adrenarche. The biological significance of E2 biosynthesis in these young children needs to be clarified in future studies.
Search for other papers by Valentina Guarnotta in
Google Scholar
PubMed
Search for other papers by Silvia Lucchese in
Google Scholar
PubMed
Search for other papers by Mariagrazia Irene Mineo in
Google Scholar
PubMed
Search for other papers by Donatella Mangione in
Google Scholar
PubMed
Search for other papers by Renato Venezia in
Google Scholar
PubMed
Search for other papers by Piero Luigi Almasio in
Google Scholar
PubMed
Search for other papers by Carla Giordano in
Google Scholar
PubMed
with PP that are associated with the development of PCOS and to establish predictive factors for PCOS in this population. Materials and methods This retrospective cohort study was carried out in patients with PP who developed or did not develop
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France
Search for other papers by Isabelle Flechtner in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France
Search for other papers by Magali Viaud in
Google Scholar
PubMed
Search for other papers by Dulanjalee Kariyawasam in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France
Search for other papers by Marie Perrissin-Fabert in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France
Search for other papers by Maud Bidet in
Google Scholar
PubMed
Department of Endocrinology and Reproductive Medicine, AP-HPIE3M, Hôpital Pitié-Salpêtrière, ICAN, Paris, France
Search for other papers by Anne Bachelot in
Google Scholar
PubMed
Department of Endocrinology and Reproductive Medicine, AP-HPIE3M, Hôpital Pitié-Salpêtrière, ICAN, Paris, France
Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Search for other papers by Philippe Labrune in
Google Scholar
PubMed
Centre for Rare Gynecological Disorders, Hospital Universitaire Necker-Enfants Malades, Paediatric Endocrinology, Gynaecology and Diabetology, AP-HP, Université de Paris, Paris, France
Search for other papers by Pascale de Lonlay in
Google Scholar
PubMed
Department of Paediatric Endocrinology, Gynaecology, and Diabetology, AP-HP, Necker-Enfants Malades University Hospital, IMAGINE Institute affiliate, Paris, France
Centre for Rare Gynecological Disorders, Hospital Universitaire Necker-Enfants Malades, Paediatric Endocrinology, Gynaecology and Diabetology, AP-HP, Université de Paris, Paris, France
Search for other papers by Michel Polak in
Google Scholar
PubMed
prevent the development of long-term complications including neurological impairments (developmental delay, particularly affecting speech, low intellectual quotient and sometimes epilepsy) ( 7 ), osteoporosis and premature ovarian insufficiency (POI) ( 8
Department of Pediatrics, Navarra Hospital Complex, Pamplona, Spain
Navarra Institute for Health Research (IdisNA), Pamplona, Spain
Search for other papers by Teodoro Durá-Travé in
Google Scholar
PubMed
Search for other papers by Fidel Gallinas-Victoriano in
Google Scholar
PubMed
Search for other papers by María Malumbres-Chacon in
Google Scholar
PubMed
Search for other papers by Lotfi Ahmed-Mohamed in
Google Scholar
PubMed
Navarra Institute for Health Research (IdisNA), Pamplona, Spain
Search for other papers by María Jesús Chueca -Guindulain in
Google Scholar
PubMed
Navarra Institute for Health Research (IdisNA), Pamplona, Spain
Search for other papers by Sara Berrade-Zubiri in
Google Scholar
PubMed
Introduction Central precocious puberty (CPP) is defined as the premature activation of the hypothalamic–pituitary–gonadal axis (HPG) with the onset of breast development before 8 years of age in girls and an increase in testicular size in
AP-HP.Nord-Université de Paris, Hôpital Universitaire Robert Debré, Unité d’Épidémiologie Clinique, Inserm, Paris, France
Search for other papers by Enora Le Roux in
Google Scholar
PubMed
Search for other papers by Florence Menesguen in
Google Scholar
PubMed
Search for other papers by Isabelle Tejedor in
Google Scholar
PubMed
Search for other papers by Marc Popelier in
Google Scholar
PubMed
Search for other papers by Marine Halbron in
Google Scholar
PubMed
Search for other papers by Pauline Faucher in
Google Scholar
PubMed
Search for other papers by Sabine Malivoir in
Google Scholar
PubMed
Search for other papers by Graziella Pinto in
Google Scholar
PubMed
Search for other papers by Juliane Léger in
Google Scholar
PubMed
Search for other papers by Stephane Hatem in
Google Scholar
PubMed
Search for other papers by Michel Polak in
Google Scholar
PubMed
Search for other papers by Christine Poitou in
Google Scholar
PubMed
Search for other papers by Philippe Touraine in
Google Scholar
PubMed
this context that a new programme of transition based on case management has been developed in a French adult hospital for young people with various endocrine and metabolic diseases. The development project was based on a survey, conducted by the team
Search for other papers by Mei Li in
Google Scholar
PubMed
Search for other papers by Yanfei Chen in
Google Scholar
PubMed
Search for other papers by Binrong Liao in
Google Scholar
PubMed
Search for other papers by Jing Tang in
Google Scholar
PubMed
Search for other papers by Jingzi Zhong in
Google Scholar
PubMed
Search for other papers by Dan Lan in
Google Scholar
PubMed
luteinizing hormone (LH) and follicle stimulating hormone (FSH). Central precocious puberty (CPP) is a common pediatric endocrine disease due to premature reactivation of the HPG axis leading to the development of secondary sexual characteristics before the
Search for other papers by Raja Padidela in
Google Scholar
PubMed
Search for other papers by Moira S Cheung in
Google Scholar
PubMed
Search for other papers by Vrinda Saraff in
Google Scholar
PubMed
Search for other papers by Poonam Dharmaraj in
Google Scholar
PubMed
monitor development and progression of nephrocalcinosis. On an annual basis, blood pressure should be checked. A clinical assessment of skeletal deformity, including craniosynostosis when age appropriate, should also be made at every clinic visit and, if