Search Results
Department of Clinical Chemistry, Hematology and Immunology, Noordwest Ziekenhuis, Alkmaar, The Netherlands
Search for other papers by Niek F Dirks in
Google Scholar
PubMed
Search for other papers by Etienne Cavalier in
Google Scholar
PubMed
Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam, The Netherlands
Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
Search for other papers by Annemieke C Heijboer in
Google Scholar
PubMed
2.0: an update on the current status worldwide . European Journal of Clinical Nutrition 2020 74 1498 – 1513 . ( https://doi.org/10.1038/s41430-020-0558-y ) 2 Christakos S Li S De La Cruz J Bikle DD . New developments in our understanding
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Rong Xu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Difei Lian in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yan Xie in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Lin Mu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yali Wu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Zhilei Chen in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Baoyu Zhang in
Google Scholar
PubMed
). The development of osteoporosis is associated with a variety of factors, including hormone changes and calcium and vitamin D deficiency, and there is increasing evidence that oxidative stress is also a potential mechanism for age-related bone loss
Search for other papers by Róża Aleksandrowicz in
Google Scholar
PubMed
Search for other papers by Marek Strączkowski in
Google Scholar
PubMed
muscle to insulin, defined as insulin resistance (IR), contribute to the development of obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases. Skeletal muscle insulin action is decreased in prediabetes and T2DM, but it also may be largely
Search for other papers by Herjan J T Coelingh Bennink in
Google Scholar
PubMed
Search for other papers by Jan Krijgh in
Google Scholar
PubMed
Search for other papers by Jan F M Egberts in
Google Scholar
PubMed
Search for other papers by Maria Slootweg in
Google Scholar
PubMed
Search for other papers by Harm H E van Melick in
Google Scholar
PubMed
Search for other papers by Erik P M Roos in
Google Scholar
PubMed
Search for other papers by Diederik M Somford in
Google Scholar
PubMed
Search for other papers by Yvette Zimmerman in
Google Scholar
PubMed
Search for other papers by Iman J Schultz in
Google Scholar
PubMed
Search for other papers by Noel W Clarke in
Google Scholar
PubMed
Search for other papers by R Jeroen A van Moorselaar in
Google Scholar
PubMed
Search for other papers by Frans M J Debruyne in
Google Scholar
PubMed
regulated by systemic hormones and local regulators produced within the bone ( 30 ). Estrogens and androgens are critical for skeletal development and maintenance and play important roles in males and females during the pubertal growth spurt and in reaching
F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
Search for other papers by Francesca Marini in
Google Scholar
PubMed
Search for other papers by Francesca Giusti in
Google Scholar
PubMed
Search for other papers by Teresa Iantomasi in
Google Scholar
PubMed
Search for other papers by Federica Cioppi in
Google Scholar
PubMed
Search for other papers by Maria Luisa Brandi in
Google Scholar
PubMed
Introduction Multiple endocrine neoplasia type 1 (MEN1) is a rare, autosomal-dominant inherited cancer syndrome characterized by the development, during the lifetime of a patient, of multiple tumors in target neuroendocrine and non
Search for other papers by Glenville Jones in
Google Scholar
PubMed
Vitamin D has many physiological functions including upregulation of intestinal calcium and phosphate absorption, mobilization of bone resorption, renal reabsorption of calcium as well as actions on a variety of pleiotropic functions. It is believed that many of the hormonal effects of vitamin D involve a 1,25-dihydroxyvitamin D3-vitamin D receptor-mediated transcriptional mechanism involving binding to the cellular chromatin and regulating hundreds of genes in many tissues. This comprehensive historical review provides a unique perspective of the many steps of the discovery of vitamin D and its deficiency disease, rickets, stretching from 1650 until the present. The overview is divided into four distinct historical phases which cover the major developments in the field and in the process highlighting the: (a) first recognition of rickets or vitamin D deficiency; (b) discovery of the nutritional factor, vitamin D and its chemical structure; (c) elucidation of vitamin D metabolites including the hormonal form, 1,25-dihydroxyvitamin D3; (d) delineation of the vitamin D cellular machinery, functions and vitamin D-related diseases which focused on understanding the mechanism of action of vitamin D in its many target cells.
Search for other papers by Josef Köhrle in
Google Scholar
PubMed
Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
Search for other papers by Martina Rauner in
Google Scholar
PubMed
Search for other papers by Susan A Lanham-New in
Google Scholar
PubMed
efficient preventive approaches have proved challenging. More than a century ago, a prevailing condition that adversely affected child development and was termed the ‘English disease’, but which was widespread over most industrialized regions and major
Search for other papers by Souad Daamouch in
Google Scholar
PubMed
Search for other papers by Sylvia Thiele in
Google Scholar
PubMed
Search for other papers by Lorenz Hofbauer in
Google Scholar
PubMed
Search for other papers by Martina Rauner in
Google Scholar
PubMed
observations suggest that the effect of adipogenic Dkk1 deletion on bone mass may be age dependent. Previous studies have shown that the role of Dkk1 in bone remodeling is complex and varies depending on the stage of skeletal development and the type of bone
School of Nursing, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, UK
Search for other papers by Jane Fletcher in
Google Scholar
PubMed
Search for other papers by Emma L Bishop in
Google Scholar
PubMed
Search for other papers by Stephanie R Harrison in
Google Scholar
PubMed
Search for other papers by Amelia Swift in
Google Scholar
PubMed
Search for other papers by Sheldon C Cooper in
Google Scholar
PubMed
Search for other papers by Sarah K Dimeloe in
Google Scholar
PubMed
Search for other papers by Karim Raza in
Google Scholar
PubMed
Search for other papers by Martin Hewison in
Google Scholar
PubMed
and CD86 that are associated with antigen presentation to T cells ( 31 , 32 ), leading to impaired T cell activation ( 31 , 35 ). Subsequent analyses have shown that DC exposed to 1,25D exhibit an immature phenotype that promotes the development of
Search for other papers by Huda M Elsharkasi in
Google Scholar
PubMed
Search for other papers by Suet C Chen in
Google Scholar
PubMed
Search for other papers by Lewis Steell in
Google Scholar
PubMed
Paediatric Neurosciences Research Group, Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
Search for other papers by Shuko Joseph in
Google Scholar
PubMed
Search for other papers by Naiemh Abdalrahaman in
Google Scholar
PubMed
Search for other papers by Christie McComb in
Google Scholar
PubMed
Search for other papers by Blair Johnston in
Google Scholar
PubMed
Search for other papers by John Foster in
Google Scholar
PubMed
Search for other papers by Sze Choong Wong in
Google Scholar
PubMed
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
sensitivity of trabecular bone to oestrogen ( 26 ). In addition, trabecular bone development may be less dependent on the growth hormone/insulin-like growth factor 1 axis, unlike cortical bone mass ( 31 ). In fact, high growth hormone levels as encountered