Search Results
Department of Child and Adolescent Medicine, Section of Pediatric Cardiology, University Hospital Jena, Am Klinikum, Jena, Germany
Search for other papers by Alexandra Kiess in
Google Scholar
PubMed
Search for other papers by Jessica Green in
Google Scholar
PubMed
Search for other papers by Anja Willenberg in
Google Scholar
PubMed
Search for other papers by Uta Ceglarek in
Google Scholar
PubMed
Search for other papers by Ingo Dähnert in
Google Scholar
PubMed
Department of Women and Child Health, Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse, Leipzig, Germany
Search for other papers by Wieland Kiess in
Google Scholar
PubMed
Department of Women and Child Health, Hospital for Children and Adolescents and Center for Pediatric Research (CPL), University of Leipzig, Liebigstrasse, Leipzig, Germany
Search for other papers by Mandy Vogel in
Google Scholar
PubMed
-BP1/IGF-1-ratio with NT-proBNP were seen in patients with and without HF ( 4 ); in a cohort of pediatric and adult patients with Fontan physiology, higher BNP was associated with lower IGF-1 Z scores ( 5 ) and in 30 pediatric patients with congenital
Search for other papers by Lukas Plachy in
Google Scholar
PubMed
Search for other papers by Lenka Petruzelkova in
Google Scholar
PubMed
Search for other papers by Petra Dusatkova in
Google Scholar
PubMed
Search for other papers by Klara Maratova in
Google Scholar
PubMed
Search for other papers by Dana Zemkova in
Google Scholar
PubMed
Search for other papers by Lenka Elblova in
Google Scholar
PubMed
Search for other papers by Vit Neuman in
Google Scholar
PubMed
Search for other papers by Stanislava Kolouskova in
Google Scholar
PubMed
Search for other papers by Barbora Obermannova in
Google Scholar
PubMed
Search for other papers by Marta Snajderova in
Google Scholar
PubMed
Search for other papers by Zdenek Sumnik in
Google Scholar
PubMed
Search for other papers by Jan Lebl in
Google Scholar
PubMed
Search for other papers by Stepanka Pruhova in
Google Scholar
PubMed
and HESX1 ) that could cause FSS and multiple pituitary hormone deficiency ( 14 , 15 ). Insensitivity to GH (IGF deficiency and IGF resistance) may also be inherited in an AD manner (e.g., IGF1R , GHR and STAT5B genes) ( 2 , 16 ). Despite the
Search for other papers by Patrizia Bruzzi in
Google Scholar
PubMed
Search for other papers by Silvia Vannelli in
Google Scholar
PubMed
Search for other papers by Emanuela Scarano in
Google Scholar
PubMed
Search for other papers by Natascia Di Iorgi in
Google Scholar
PubMed
Search for other papers by Maria Parpagnoli in
Google Scholar
PubMed
Search for other papers by MariaCarolina Salerno in
Google Scholar
PubMed
Search for other papers by Marco Pitea in
Google Scholar
PubMed
Search for other papers by Maria Elisabeth Street in
Google Scholar
PubMed
Search for other papers by Andrea Secco in
Google Scholar
PubMed
Search for other papers by Adolfo Andrea Trettene in
Google Scholar
PubMed
Search for other papers by Malgorzata Wasniewska in
Google Scholar
PubMed
Search for other papers by Nicola Corciulo in
Google Scholar
PubMed
Search for other papers by Gianluca Tornese in
Google Scholar
PubMed
Search for other papers by Maria Felicia Faienza in
Google Scholar
PubMed
Search for other papers by Maurizio Delvecchio in
Google Scholar
PubMed
Search for other papers by Simona Filomena Madeo in
Google Scholar
PubMed
Search for other papers by Lorenzo Iughetti in
Google Scholar
PubMed
verified and collected at each study time. All patients were submitted to rhGH treatment according to the Italian Agency for Drugs guidelines ( 25 ). Biochemical analysis Fasting glucose, insulin and insulin-like growth factor 1 (IGF1) values were
Search for other papers by Nathalia Liberatoscioli Menezes Andrade in
Google Scholar
PubMed
Search for other papers by Mariana Ferreira de Assis Funari in
Google Scholar
PubMed
Search for other papers by Alexsandra Christianne Malaquias in
Google Scholar
PubMed
Search for other papers by Paulo Ferrez Collett-Solberg in
Google Scholar
PubMed
Search for other papers by Nathalia L R A Gomes in
Google Scholar
PubMed
Departamento de Medicina, Faculdade de Ciencias Medicas da Santa Casa de Sao Paulo, Sao Paulo, Brasil
Search for other papers by Renata Scalco in
Google Scholar
PubMed
Search for other papers by Naiara Castelo Branco Dantas in
Google Scholar
PubMed
Search for other papers by Raissa C Rezende in
Google Scholar
PubMed
Search for other papers by Angelica M F P Tiburcio in
Google Scholar
PubMed
Search for other papers by Micheline A R Souza in
Google Scholar
PubMed
Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
Search for other papers by Bruna L Freire in
Google Scholar
PubMed
Search for other papers by Ana C V Krepischi in
Google Scholar
PubMed
Search for other papers by Carlos Alberto Longui in
Google Scholar
PubMed
Search for other papers by Antonio Marcondes Lerario in
Google Scholar
PubMed
Search for other papers by Ivo J P Arnhold in
Google Scholar
PubMed
Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
Search for other papers by Alexander A L Jorge in
Google Scholar
PubMed
Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo (USP), Sao Paulo, Brasil
Search for other papers by Gabriela Andrade Vasques in
Google Scholar
PubMed
short stature in patients initially classified as ISS ( 7 ). The genetic defects associated with ISS are mainly located in genes that regulate the endochondral ossification process in the growth plate and in genes related to the GH–IGF-1 axis ( 8 , 9
Search for other papers by Danielle Christine Maria van der Kaay in
Google Scholar
PubMed
Search for other papers by Anne Rochtus in
Google Scholar
PubMed
Search for other papers by Gerhard Binder in
Google Scholar
PubMed
Search for other papers by Ingo Kurth in
Google Scholar
PubMed
Search for other papers by Dirk Prawitt in
Google Scholar
PubMed
Search for other papers by Irène Netchine in
Google Scholar
PubMed
Department of Endocrinology at Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Gudmundur Johannsson in
Google Scholar
PubMed
Search for other papers by Anita C S Hokken-Koelega in
Google Scholar
PubMed
Search for other papers by Miriam Elbracht in
Google Scholar
PubMed
Search for other papers by Thomas Eggermann in
Google Scholar
PubMed
radiologic and clinical examinations suggest an endocrine cause of the growth disturbance, growth hormone stimulation tests (GHSTs), serum insulin-like growth factor (IGF1), and sometimes an IGF1 generation test are used to investigate the growth hormone (GH)–IGF
Search for other papers by Alberto Battezzati in
Google Scholar
PubMed
Search for other papers by Andrea Foppiani in
Google Scholar
PubMed
Search for other papers by Gianfranco Alicandro in
Google Scholar
PubMed
Search for other papers by Arianna Bisogno in
Google Scholar
PubMed
Search for other papers by Arianna Biffi in
Google Scholar
PubMed
Internal Medicine, S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
Search for other papers by Giorgio Bedogni in
Google Scholar
PubMed
Istituto Auxologico Italiano, IRCCS, Obesity Unit - Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, Milan, Italy
Search for other papers by Simona Bertoli in
Google Scholar
PubMed
Search for other papers by Giulia De Carlo in
Google Scholar
PubMed
Search for other papers by Erica Nazzari in
Google Scholar
PubMed
Search for other papers by Carla Colombo in
Google Scholar
PubMed
studies in type 1 diabetes and in healthy subjects. According to mechanistic studies, insulin is one of the main regulators of growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis ( 21 ), frequently involved in growth failure associated with
Search for other papers by Mireille N M van Poppel in
Google Scholar
PubMed
Search for other papers by Christopher J Nolan in
Google Scholar
PubMed
Search for other papers by Gernot Desoye in
Google Scholar
PubMed
( 49 ). Insulin acts on lean body growth either directly, or indirectly by inducing hepatic IGF-1 production and secretion and fat mass accrual through direct action. In normal human pregnancies, cord blood C-peptide, and by inference insulin, levels
Search for other papers by Rebeca Esquivel-Zuniga in
Google Scholar
PubMed
Search for other papers by Alan D Rogol in
Google Scholar
PubMed
, growth hormone; GI, gastrointestinal; GnRH, gonadotropin-releasing hormone; hCG, human chorionic gonadotropin; IGF-1, insulin-like growth factor 1; LH, luteinizing hormone; MRI, magnetic resonance imaging ( 3 ). From New England Journal of Medicine