Search for other papers by Natacha Driessens in
Google Scholar
PubMed
Search for other papers by Madhu Prasai in
Google Scholar
PubMed
Search for other papers by Orsalia Alexopoulou in
Google Scholar
PubMed
Search for other papers by Christophe De Block in
Google Scholar
PubMed
Search for other papers by Eva Van Caenegem in
Google Scholar
PubMed
Search for other papers by Guy T’Sjoen in
Google Scholar
PubMed
Search for other papers by Frank Nobels in
Google Scholar
PubMed
Search for other papers by Christophe Ghys in
Google Scholar
PubMed
Search for other papers by Laurent Vroonen in
Google Scholar
PubMed
Search for other papers by Corinne Jonas in
Google Scholar
PubMed
Search for other papers by Bernard Corvilain in
Google Scholar
PubMed
Search for other papers by Dominique Maiter in
Google Scholar
PubMed
countries ( 1 ) and the lowest in Japan. Despite the advent of glucocorticoid replacement therapy in the early 1950s, life expectancy remains lower than in the general population ( 2 ), with increased morbidity and impaired quality of life ( 3 , 4
Search for other papers by Angela Köninger in
Google Scholar
PubMed
Search for other papers by Antonella Iannaccone in
Google Scholar
PubMed
Search for other papers by Ensar Hajder in
Google Scholar
PubMed
Search for other papers by Mirjam Frank in
Google Scholar
PubMed
Search for other papers by Boerge Schmidt in
Google Scholar
PubMed
Search for other papers by Ekkehard Schleussner in
Google Scholar
PubMed
Search for other papers by Rainer Kimmig in
Google Scholar
PubMed
Search for other papers by Alexandra Gellhaus in
Google Scholar
PubMed
Search for other papers by Hans Dieplinger in
Google Scholar
PubMed
duration of more than 3 months. Clinical or biochemical signs of hyperandrogenism were diagnosed with a Ferriman–Gallway score >7 ( 29 ) or obvious acne or alopecia ( 30 ) or an increased total testosterone (normal range 0.5–2.6 nmol/L) and/or DHEAS (normal
Search for other papers by Gamze Akkuş in
Google Scholar
PubMed
Search for other papers by Isa Burak Güney in
Google Scholar
PubMed
Search for other papers by Fesih Ok in
Google Scholar
PubMed
Search for other papers by Mehtap Evran in
Google Scholar
PubMed
Search for other papers by Volkan Izol in
Google Scholar
PubMed
Search for other papers by Şeyda Erdoğan in
Google Scholar
PubMed
Search for other papers by Yıldırım Bayazıt in
Google Scholar
PubMed
Search for other papers by Murat Sert in
Google Scholar
PubMed
Search for other papers by Tamer Tetiker in
Google Scholar
PubMed
Introduction Since the early 1980s, the prevalence of adrenal masses have been increasing due to the frequent use of radiological imaging such as magnetic resonance imaging (MRI), computerized tomography (CT) in clinical practice. The
Search for other papers by Hong Tang in
Google Scholar
PubMed
Search for other papers by Xiaomei Jiang in
Google Scholar
PubMed
Search for other papers by Yu Hua in
Google Scholar
PubMed
Search for other papers by Heyue Li in
Google Scholar
PubMed
Search for other papers by Chunlan Zhu in
Google Scholar
PubMed
Search for other papers by Xiaobai Hao in
Google Scholar
PubMed
Search for other papers by Minhui Yi in
Google Scholar
PubMed
Search for other papers by Linxia Li in
Google Scholar
PubMed
People’s Hospital (item number: 2021-AR-059). Adult female C57BL/6J mice were housed withaccess to food and water ad libitum . The PCOS mouse model was established as described previously ( 18 ). In brief, female C57BL/6J mice (4 weeks old) were
Berlin Institute of Health (BIH), Berlin, Germany
Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
Search for other papers by Eric Seidel in
Google Scholar
PubMed
Search for other papers by Gudrun Walenda in
Google Scholar
PubMed
Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
Search for other papers by Clemens Messerschmidt in
Google Scholar
PubMed
Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
Search for other papers by Benedikt Obermayer in
Google Scholar
PubMed
Search for other papers by Mirko Peitzsch in
Google Scholar
PubMed
Search for other papers by Paal Wallace in
Google Scholar
PubMed
Search for other papers by Rohini Bahethi in
Google Scholar
PubMed
Search for other papers by Taekyeong Yoo in
Google Scholar
PubMed
Search for other papers by Murim Choi in
Google Scholar
PubMed
Search for other papers by Petra Schrade in
Google Scholar
PubMed
Search for other papers by Sebastian Bachmann in
Google Scholar
PubMed
Search for other papers by Gerhard Liebisch in
Google Scholar
PubMed
Search for other papers by Graeme Eisenhofer in
Google Scholar
PubMed
Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
Search for other papers by Dieter Beule in
Google Scholar
PubMed
Berlin Institute of Health (BIH), Berlin, Germany
Department of Nephrology, School of Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
Search for other papers by Ute I Scholl in
Google Scholar
PubMed
last passage; N C , number of cells counted at the current passage; N S , number of cells seeded after the last passage. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay After discontinuation of mitotane treatment (if
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Hans Valdemar López Krabbe in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jørgen Holm Petersen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Fertility, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Search for other papers by Louise Laub Asserhøj in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Peter Christiansen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Rikke Beck Jensen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Line Hartvig Cleemann in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Casper P Hagen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Lærke Priskorn in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Niels Jørgensen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Katharina M Main in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Lise Aksglaede in
Google Scholar
PubMed
concentration of LH exceeds +2 s.d. . Standard treatment is either peroral testosterone undecanoate (TU) (Testosterone ‘Paranova’; (Paranova Danmark A/S, Herlev, Denmark)) or transdermal testosterone (Tostran 2%; Kyowa Kirin, Holland), with dose titration
Search for other papers by Paul-Martin Holterhus in
Google Scholar
PubMed
Search for other papers by Alexandra Kulle in
Google Scholar
PubMed
Search for other papers by Anne-Marie Till in
Google Scholar
PubMed
Search for other papers by Caroline Stille in
Google Scholar
PubMed
Search for other papers by Tabea Lamprecht in
Google Scholar
PubMed
Search for other papers by Simon Vieth in
Google Scholar
PubMed
Search for other papers by Melchior Lauten in
Google Scholar
PubMed
glucocorticoids and mineralocorticoids. The most important acquired example of global adrenal insufficiency is Addison’s disease ( 9 ). Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) is a genetically determined block of
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Stine A Holmboe in
Google Scholar
PubMed
Search for other papers by Ravi Jasuja in
Google Scholar
PubMed
Search for other papers by Brian Lawney in
Google Scholar
PubMed
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Lærke Priskorn in
Google Scholar
PubMed
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Niels Joergensen in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Allan Linneberg in
Google Scholar
PubMed
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
Search for other papers by Tina Kold Jensen in
Google Scholar
PubMed
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Niels Erik Skakkebæk in
Google Scholar
PubMed
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anna-Maria Andersson in
Google Scholar
PubMed
emigration, after which they were censored. Statistical methods Mean, s.d. and relative s.d. (sample s.d. σ/sample mean µ × 100) were calculated for each of the three free testosterone variables. Initially, cFTV and cFTZ levels were visually
Search for other papers by Greta B Raglan in
Google Scholar
PubMed
Search for other papers by Louis A Schmidt in
Google Scholar
PubMed
Department of Neuroscience, Georgetown University, Washington, District of Columbia, USA
Search for other papers by Jay Schulkin in
Google Scholar
PubMed
lower-than-usual release of glucocorticoids in fearful situations, whereas others have higher release ( 2 ), and glucocorticoid release has differential effects and antecedents depending on an individual’s history and development ( 3 , 4 ). The roles of
Search for other papers by L Ghataore in
Google Scholar
PubMed
Search for other papers by I Chakraborti in
Google Scholar
PubMed
Search for other papers by S J Aylwin in
Google Scholar
PubMed
Search for other papers by K-M Schulte in
Google Scholar
PubMed
Departments of, Clinical Biochemistry, Medicine, Department of Endocrinology and Internal Medicine, King's College Hospital, London SE5 9RS, UK
Search for other papers by D Dworakowska in
Google Scholar
PubMed
Search for other papers by P Coskeran in
Google Scholar
PubMed
Search for other papers by N F Taylor in
Google Scholar
PubMed
, the 20β-reduced epimer was much diminished, as expected. Other major markers showed unchanged metabolism. These were (manuscript in preparation) pregnanediol (20α), pregnanetriol (20α), DHEA, DHEA metabolites, tetrahydro-11-deoxycortisol (5β) and 5