Search for other papers by Richard W Carroll in
Google Scholar
PubMed
Department of Medicine, University of Otago, Wellington, New Zealand
Search for other papers by Brian Corley in
Google Scholar
PubMed
Search for other papers by Joe Feltham in
Google Scholar
PubMed
Department of Medicine, University of Otago, Wellington, New Zealand
Search for other papers by Patricia Whitfield in
Google Scholar
PubMed
Search for other papers by William Park in
Google Scholar
PubMed
Search for other papers by Rowena Howard in
Google Scholar
PubMed
Search for other papers by Melissa Yssel in
Google Scholar
PubMed
Search for other papers by Ian Phillips in
Google Scholar
PubMed
Department of General Surgery, Wellington Regional Hospital, New Zealand
Search for other papers by Simon Harper in
Google Scholar
PubMed
Department of Medicine, Monash University, Clayton, Victoria, Australia
Search for other papers by Jun Yang in
Google Scholar
PubMed
in younger patients if imaging does not clearly indicate lateralizing adrenal pathology ( 1 , 13 , 14 , 15 , 16 , 17 ). Current AVS protocols incorporate measurement of cortisol concentrations from the adrenal veins (AV) and peripheral veins (PV
Search for other papers by Clara Lundetoft Clausen in
Google Scholar
PubMed
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
Search for other papers by Niels Erik Skakkebæk in
Google Scholar
PubMed
Search for other papers by Hanne Frederiksen in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Thomas Benfield in
Google Scholar
PubMed
Introduction Numerous investigations have reported significant fluctuations in endogenous cortisol release in the context of acute illness stemming from coronavirus disease 2019 (COVID-19) ( 1 , 2 , 3 ). Conversely, an opposing perspective
Search for other papers by Magdalena Lech in
Google Scholar
PubMed
Search for other papers by Ruvini Ranasinghe in
Google Scholar
PubMed
Faculty of Life Sciences and Medicine, School of Life Course Sciences, King’s College London, London, UK
Search for other papers by Royce P Vincent in
Google Scholar
PubMed
Search for other papers by David R Taylor in
Google Scholar
PubMed
Search for other papers by Lea Ghataore in
Google Scholar
PubMed
Search for other papers by James Luxton in
Google Scholar
PubMed
Quebec Heart and Lung Institute, Laval University, Quebec, Canada
Search for other papers by Fannie Lajeunesse-Trempe in
Google Scholar
PubMed
Search for other papers by Pia Roser in
Google Scholar
PubMed
Search for other papers by Eftychia E Drakou in
Google Scholar
PubMed
Search for other papers by Ling Ling Chuah in
Google Scholar
PubMed
Barts and the London School of Medicine, Centre for Endocrinology, William Harvey Institute, London, UK
Neuroendocrine Tumour Unit, Royal Free Hospital, London, UK
Search for other papers by Ashley B Grossman in
Google Scholar
PubMed
Search for other papers by Simon J B Aylwin in
Google Scholar
PubMed
Obesity, Type 2 Diabetes and Immunometabolism Research Group, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Course Sciences, King’s College London, London, UK
Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry, UK
Search for other papers by Georgios K Dimitriadis in
Google Scholar
PubMed
serum cortisol may not accurately reflect the glucocorticoid status of the patient and may lead to unrecognised adrenal insufficiency. Consequently, the altered binding protein profile and heightened risk of adrenal insufficiency lead to patients on
Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
Search for other papers by Aleid J G Wirix in
Google Scholar
PubMed
Search for other papers by Ines A von Rosenstiel-Jadoul in
Google Scholar
PubMed
Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Search for other papers by Mai J M Chinapaw in
Google Scholar
PubMed
Search for other papers by Michaela F Hartmann in
Google Scholar
PubMed
Search for other papers by Joana E Kist-van Holthe in
Google Scholar
PubMed
Search for other papers by Stefan A Wudy in
Google Scholar
PubMed
Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
effects on body fat disposition and vascular reactivity. Indeed, childhood obesity has been associated with alterations in hypothalamus–pituitary–adrenal (HPA) axis activity, including increased cortisol production and flattening of early-morning peak
Division of Endocrinology, Mid and South Essex NHS Trust, Broomfield, UK
Search for other papers by Saroj Kumar Sahoo in
Google Scholar
PubMed
Search for other papers by Jayakrishnan C Menon in
Google Scholar
PubMed
Search for other papers by Nidhi Tripathy in
Google Scholar
PubMed
Search for other papers by Monalisa Nayak in
Google Scholar
PubMed
Search for other papers by Subhash Yadav in
Google Scholar
PubMed
hypocortisolism ranging between 14% and 64% in patients with acute COVID-19 ( 4 , 5 , 6 ). The variable prevalence in these studies might be explained by smaller sample sizes and different cut-offs of morning cortisol used to define hypocortisolism. Similarly
Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, de Boelelaan, Amsterdam, The Netherlands
Search for other papers by Britt J van Keulen in
Google Scholar
PubMed
Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, de Boelelaan, Amsterdam, The Netherlands
Search for other papers by Michelle Romijn in
Google Scholar
PubMed
Search for other papers by Bibian van der Voorn in
Google Scholar
PubMed
Search for other papers by Marita de Waard in
Google Scholar
PubMed
Search for other papers by Michaela F Hartmann in
Google Scholar
PubMed
Search for other papers by Johannes B van Goudoever in
Google Scholar
PubMed
Search for other papers by Stefan A Wudy in
Google Scholar
PubMed
Search for other papers by Joost Rotteveel in
Google Scholar
PubMed
Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Reproduction & Development Research Institute, de Boelelaan, Amsterdam, The Netherlands
Search for other papers by Martijn J J Finken in
Google Scholar
PubMed
essential for blood pressure maintenance ( 7 ) and has been presumed to play a role in the dampening of the immune response ( 8 ). During their first weeks of life, many preterm infants fail to mount an adequate cortisol response for the degree of stress or
Search for other papers by Yiyan Wang in
Google Scholar
PubMed
Search for other papers by Yaoyao Dong in
Google Scholar
PubMed
Search for other papers by Yinghui Fang in
Google Scholar
PubMed
Search for other papers by Yao Lv in
Google Scholar
PubMed
Search for other papers by Qiqi Zhu in
Google Scholar
PubMed
Search for other papers by Xiaoheng Li in
Google Scholar
PubMed
Search for other papers by Qingquan Lian in
Google Scholar
PubMed
Search for other papers by Ren-Shan Ge in
Google Scholar
PubMed
DES induced an intrauterine growth restriction of pups in the placentas ( 6 ). However, the mechanism has not been fully elucidated. Figure 1 Chemical structure of cortisol and diethylstilbestrol. Glucocorticoid hormone is an inducing
Search for other papers by Giovanni Fanni in
Google Scholar
PubMed
Search for other papers by Petros Katsogiannos in
Google Scholar
PubMed
Search for other papers by Bipasha Nandi Jui in
Google Scholar
PubMed
Search for other papers by Magnus Sundbom in
Google Scholar
PubMed
Search for other papers by Susanne Hetty in
Google Scholar
PubMed
Search for other papers by Maria J Pereira in
Google Scholar
PubMed
Search for other papers by Jan W Eriksson in
Google Scholar
PubMed
and pancreatic islets but also of others produced by the pituitary and adrenal glands. Therefore, in this study, we assess growth hormone (GH), ACTH, and cortisol levels, which are largely unexplored in this context. Herein, we report exploratory post
Search for other papers by Gamze Akkuş in
Google Scholar
PubMed
Search for other papers by Isa Burak Güney in
Google Scholar
PubMed
Search for other papers by Fesih Ok in
Google Scholar
PubMed
Search for other papers by Mehtap Evran in
Google Scholar
PubMed
Search for other papers by Volkan Izol in
Google Scholar
PubMed
Search for other papers by Şeyda Erdoğan in
Google Scholar
PubMed
Search for other papers by Yıldırım Bayazıt in
Google Scholar
PubMed
Search for other papers by Murat Sert in
Google Scholar
PubMed
Search for other papers by Tamer Tetiker in
Google Scholar
PubMed
hyperaldosteronism, hypercortisolism and pheochromocytoma. Plasma renin/aldosterone ratios, plasma normetanephrine, metanephrines and urinary free cortisol (UFC) were also studied. Autonomous cortisol secretion was described as serum cortisol >1.8 µg/dL following 1
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
Search for other papers by Sirazum Choudhury in
Google Scholar
PubMed
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
Search for other papers by Tricia Tan in
Google Scholar
PubMed
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
Search for other papers by Katharine Lazarus in
Google Scholar
PubMed
Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
Search for other papers by Karim Meeran in
Google Scholar
PubMed
cortisol leading to steroid exposure at detrimental times in the day and finally, differences in the biological actions of oral synthetic glucocorticoids versus endogenous cortisol. Interrogation of the EU-AIR registry demonstrated a higher mortality of 1