Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, Unidad 747), ISCIII, Spain
Department of Endocrinology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
Department of Medicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
Search for other papers by Susan M Webb in
Google Scholar
PubMed
Search for other papers by Jette Kristensen in
Google Scholar
PubMed
Search for other papers by Anna Nordenström in
Google Scholar
PubMed
Search for other papers by Diana Vitali in
Google Scholar
PubMed
Search for other papers by Vincent Amodru in
Google Scholar
PubMed
Search for other papers by Lenja Katharina Wiehe in
Google Scholar
PubMed
Search for other papers by Matt Bolz-Johnson in
Google Scholar
PubMed
are available ( 7 , 11 ). Neonatal screening may shorten the time to diagnosis for some diseases such as congenital adrenal hyperplasia and thereby prevent sequelae or neonatal death, in addition to the psychological aspects of avoiding diagnostic
Search for other papers by Ewa Stogowska in
Google Scholar
PubMed
Search for other papers by Karol Adam Kamiński in
Google Scholar
PubMed
Search for other papers by Bartosz Ziółko in
Google Scholar
PubMed
Search for other papers by Irina Kowalska in
Google Scholar
PubMed
congenital adrenal hyperplasia (CAH). PCOS is the most common endocrinopathy among women of reproductive age, with a prevalence of 4– 12% ( 14 ) and, according to Rotterdam criteria, can be diagnosed after fulfilling two out of three following signs or
Search for other papers by Kathrin Zopf in
Google Scholar
PubMed
Search for other papers by Kathrin R Frey in
Google Scholar
PubMed
Search for other papers by Tina Kienitz in
Google Scholar
PubMed
Search for other papers by Manfred Ventz in
Google Scholar
PubMed
Search for other papers by Britta Bauer in
Google Scholar
PubMed
Search for other papers by Marcus Quinkler in
Google Scholar
PubMed
AC might be influenced by the Bcl I polymorphism. Therefore, we included 72 patients with adrenal insufficiency (47 patients with primary adrenal insufficiency (PAI) and 25 patients with congenital adrenal hyperplasia (CAH)) in a prospective
Search for other papers by Rachel Forfar in
Google Scholar
PubMed
Search for other papers by Mashal Hussain in
Google Scholar
PubMed
Search for other papers by Puneet Khurana in
Google Scholar
PubMed
Search for other papers by Jennifer Cook in
Google Scholar
PubMed
Search for other papers by Steve Lewis in
Google Scholar
PubMed
Search for other papers by Dillon Popat in
Google Scholar
PubMed
Search for other papers by David Jackson in
Google Scholar
PubMed
Search for other papers by Ed McIver in
Google Scholar
PubMed
Search for other papers by Jeff Jerman in
Google Scholar
PubMed
Search for other papers by Debra Taylor in
Google Scholar
PubMed
Search for other papers by Adrian JL Clark in
Google Scholar
PubMed
Search for other papers by Li F Chan in
Google Scholar
PubMed
excess ( 6 ). Conditions include Cushing’s disease where pituitary adenoma removal is unsuccessful, ectopic ACTH syndrome from tumours such as small cell lung cancers, and congenital adrenal hyperplasia (CAH) where ACTH drives excess androgen production
Department of Endocrinology and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Search for other papers by Stamatina Ioakim in
Google Scholar
PubMed
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Search for other papers by Silvia Andonova in
Google Scholar
PubMed
Search for other papers by Magdalena Avbelj-Stefanija in
Google Scholar
PubMed
Search for other papers by Federico Baronio in
Google Scholar
PubMed
Search for other papers by Jerome Bouligand in
Google Scholar
PubMed
Search for other papers by Hennie T Bruggenwirth in
Google Scholar
PubMed
Search for other papers by Justin H Davies in
Google Scholar
PubMed
Search for other papers by Elfride De Baere in
Google Scholar
PubMed
Search for other papers by Iveta Dzivite-Krisane in
Google Scholar
PubMed
Search for other papers by Paula Fernandez-Alvarez in
Google Scholar
PubMed
Search for other papers by Alexander Gheldof in
Google Scholar
PubMed
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Search for other papers by Claudia Giavoli in
Google Scholar
PubMed
Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Search for other papers by Olaf Hiort in
Google Scholar
PubMed
Search for other papers by Paul-Martin Holterhus in
Google Scholar
PubMed
Search for other papers by Anders Juul in
Google Scholar
PubMed
Search for other papers by Csilla Krausz in
Google Scholar
PubMed
Search for other papers by Kristina Lagerstedt-Robinson in
Google Scholar
PubMed
West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, United Kingdom
Search for other papers by Ruth McGowan in
Google Scholar
PubMed
Search for other papers by Uta Neumann in
Google Scholar
PubMed
Search for other papers by Antonio Novelli in
Google Scholar
PubMed
Search for other papers by Xavier Peyrassol in
Google Scholar
PubMed
Search for other papers by Leonidas A Phylactou in
Google Scholar
PubMed
Search for other papers by Julia Rohayem in
Google Scholar
PubMed
Search for other papers by Philippe Touraine in
Google Scholar
PubMed
Search for other papers by Dineke Westra in
Google Scholar
PubMed
Search for other papers by Valeria Vezzoli in
Google Scholar
PubMed
Search for other papers by Raffaella Rossetti in
Google Scholar
PubMed
the differences of sex development (DSD), that are generally associated with phenotypical manifestations incongruent with chromosomal sex (46,XY DSD and 46,XX DSD), and those associated with absent/delayed puberty due to congenital hypogonadotropic
Search for other papers by Rebeca Esquivel-Zuniga in
Google Scholar
PubMed
Search for other papers by Alan D Rogol in
Google Scholar
PubMed
Male Klinefelter syndrome Congenital anorchia/testicular regression Kallmann syndrome Combined pituitary hormone deficiency CNS: Tumors/infiltrative diseases Chemotherapy/Radiation therapy Systemic illness e.g. (inflammatory bowel disease, celiac
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Marie Lindhardt Ljubicic in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Margit Bistrup Fischer in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Emmie N Upners in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Alexander S Busch in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Katharina M Main in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anna-Maria Andersson in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Casper P Hagen in
Google Scholar
PubMed
International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
): Klinefelter syndrome including variants ( n = 29), congenital adrenal hyperplasia (CAH, classical n = 14; non-classical n = 2), 45,X/46,XY mosaicism ( n = 15), idiopathic 46,XY DSD ( n = 8), Turner syndrome including mosaic variants ( SRY negative) ( n
Search for other papers by Rossella Cannarella in
Google Scholar
PubMed
Search for other papers by Teresa Mattina in
Google Scholar
PubMed
Search for other papers by Rosita A Condorelli in
Google Scholar
PubMed
Search for other papers by Laura M Mongioì in
Google Scholar
PubMed
Search for other papers by Giuseppe Pandini in
Google Scholar
PubMed
Search for other papers by Sandro La Vignera in
Google Scholar
PubMed
Search for other papers by Aldo E Calogero in
Google Scholar
PubMed
including cryptorchidism, hypoplasia of genitalia, hypospadias, congenital bilateral inguinal hernia, congenital hydrocele; e including down-slanting palpebral features, micrognathia, low-set ears, high-arched palate, prominent nose, frontal bossing
Search for other papers by Marcus Quinkler in
Google Scholar
PubMed
Search for other papers by Bertil Ekman in
Google Scholar
PubMed
Search for other papers by Claudio Marelli in
Google Scholar
PubMed
Search for other papers by Sharif Uddin in
Google Scholar
PubMed
Search for other papers by Pierre Zelissen in
Google Scholar
PubMed
Search for other papers by Robert D Murray in
Google Scholar
PubMed
Search for other papers by on behalf of the EU-AIR Investigators in
Google Scholar
PubMed
observational, open-ended study (ClinicalTrials.gov identifier: Nbib1661387) in patients with primary AI (PAI), secondary AI (SAI) or congenital adrenal hyperplasia (CAH) who are undergoing long-term treatment with modified-release hydrocortisone or other
The Rappaport Faculty of Medicine, Technion, Haifa, Israel
Search for other papers by Yardena Tenenbaum-Rakover in
Google Scholar
PubMed
Search for other papers by Osnat Admoni in
Google Scholar
PubMed
The Rappaport Faculty of Medicine, Technion, Haifa, Israel
Search for other papers by Ghadir Elias-Assad in
Google Scholar
PubMed
Search for other papers by Shira London in
Google Scholar
PubMed
The Azrieli Faculty of Medicine, Bar-Ilan, Safed, Israel
Search for other papers by Marie Noufi-Barhoum in
Google Scholar
PubMed
Search for other papers by Hanna Ludar in
Google Scholar
PubMed
Search for other papers by Tal Almagor in
Google Scholar
PubMed
Search for other papers by Yoav Zehavi in
Google Scholar
PubMed
Search for other papers by Charles Sultan in
Google Scholar
PubMed
Search for other papers by Rita Bertalan in
Google Scholar
PubMed
Search for other papers by Anu Bashamboo in
Google Scholar
PubMed
Search for other papers by Kenneth McElreavey in
Google Scholar
PubMed
Introduction Disorders of sex development (DSD) are classified as a congenital discrepancy between external genitalia and gonadal and chromosomal sex ( 1 ). The prevalence of DSD, including hypospadias, is estimated at 5 out of 1000 newborns