Fondazione Italiana Ricerca sulle Malattie dell’Osso (FIRMO Onlus), Florence, Italy
Search for other papers by Maria Luisa Brandi in
Google Scholar
PubMed
Search for other papers by Stefania Bandinelli in
Google Scholar
PubMed
Search for other papers by Teresa Iantomasi in
Google Scholar
PubMed
Search for other papers by Francesca Giusti in
Google Scholar
PubMed
Search for other papers by Eleonora Talluri in
Google Scholar
PubMed
Search for other papers by Giovanna Sini in
Google Scholar
PubMed
Search for other papers by Fabrizio Nannipieri in
Google Scholar
PubMed
Search for other papers by Santina Battaglia in
Google Scholar
PubMed
Search for other papers by Riccardo Giusti in
Google Scholar
PubMed
Search for other papers by Colin Gerard Egan in
Google Scholar
PubMed
Search for other papers by Luigi Ferrucci in
Google Scholar
PubMed
such as phthalates, called ‘endocrine disruptor chemicals’ (EDCs), could be associated with a reduction in vitamin D levels ( 15 , 16 ). In a study by Johns et al. , involving 4667 adults who participated in the National Health and Nutrition
Search for other papers by Brenda Anguiano in
Google Scholar
PubMed
Search for other papers by Carlos Montes de Oca in
Google Scholar
PubMed
Search for other papers by Evangelina Delgado-González in
Google Scholar
PubMed
Search for other papers by Carmen Aceves in
Google Scholar
PubMed
Thyroid hormones (THs) are involved in the development and function of the male reproductive system, but their effects on the prostate have been poorly studied. This work reviews studies related to the interrelationship between the thyroid and the prostate. The information presented here is based upon bibliographic searches in PubMed using the following search terms: prostate combined with thyroid hormone or triiodothyronine, thyroxine, hypothyroidism, hyperthyroidism, or deiodinase. We identified and searched 49 articles directly related to the issue, and discarded studies related to endocrine disruptors. The number of publications has grown in the last 20 years, considering that one of the first studies was published in 1965. This review provides information based on in vitro studies, murine models, and clinical protocols in patients with thyroid disorders. Studies indicate that THs regulate different aspects of growth, metabolism, and prostate pathology, whose global effect depends on total and/or free concentrations of THs in serum, local bioavailability, and the endocrine androgen/thyronine context.
Search for other papers by Josef Köhrle in
Google Scholar
PubMed
) Endocrinology of the Nervous System and Behaviour; and (3) Endocrine-Disrupting Chemicals. The journal will now contain these three independent sections aiming to provide a home for the excellent work published in these fields. These sections will be championed
Search for other papers by J Köhrle in
Google Scholar
PubMed
‘Endocrine-Disrupting Chemicals’. The latter has gained significant momentum both with the communication of the ‘Chemicals Strategy for Sustainability – Towards a Toxic-Free Environment’ by the European Commission in October 2020, and the implementation of
Search for other papers by Laura Chioma in
Google Scholar
PubMed
Search for other papers by Carla Bizzarri in
Google Scholar
PubMed
Search for other papers by Martina Verzani in
Google Scholar
PubMed
Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
Search for other papers by Daniela Fava in
Google Scholar
PubMed
Search for other papers by Mariacarolina Salerno in
Google Scholar
PubMed
Search for other papers by Donatella Capalbo in
Google Scholar
PubMed
Search for other papers by Chiara Guzzetti in
Google Scholar
PubMed
Search for other papers by Laura Penta in
Google Scholar
PubMed
Search for other papers by Luigi Di Luigi in
Google Scholar
PubMed
Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
Search for other papers by Natascia di Iorgi in
Google Scholar
PubMed
Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
Search for other papers by Mohamad Maghnie in
Google Scholar
PubMed
Search for other papers by Sandro Loche in
Google Scholar
PubMed
Search for other papers by Marco Cappa in
Google Scholar
PubMed
changes in body weight and obesity ( 8 , 9 ), exposure to environmental endocrine disruptors ( 10 ), and stressful life events ( 11 ). Recently, it has been proposed that precocious puberty may represent the expression of an adaptive mechanism to escape
Search for other papers by Bilal B Mughal in
Google Scholar
PubMed
Search for other papers by Jean-Baptiste Fini in
Google Scholar
PubMed
Search for other papers by Barbara A Demeneix in
Google Scholar
PubMed
-disrupting chemicals in the maternal and fetal environment. Endocrine-disrupting compounds (EDCs) are xenobiotics that modulate hormonal homeostasis thereby inducing adverse effects ( 8 ). Numerous EDCs identified to date contain a halogen group substitution with
Search for other papers by Michael C Velarde in
Google Scholar
PubMed
Search for other papers by Mikaela Erlinda M Bucu in
Google Scholar
PubMed
Search for other papers by Maria Antonia E Habana in
Google Scholar
PubMed
Asian women ( 51 , 82 ). Hence, while some of these foods are protective against endometriosis, heavy metal contamination in some of these products may counter their beneficial effects. Endocrine-disrupting chemicals (EDCs), which are ubiquitous in
Search for other papers by Konstantin Yakimchuk in
Google Scholar
PubMed
Search for other papers by Chandrashekar Bangalore Revanna in
Google Scholar
PubMed
Search for other papers by Dan Huang in
Google Scholar
PubMed
Search for other papers by Jose Inzunza in
Google Scholar
PubMed
Search for other papers by Sam Okret in
Google Scholar
PubMed
considered as endocrine-related malignancies. In addition to the endogenous estrogenic ligands, estrogen signaling may be influenced by environmental synthetic or natural (dietary) xenoestrogens, so-called endocrine-disrupting chemicals (EDCs). An
Search for other papers by Frederic Schrøder Arendrup in
Google Scholar
PubMed
Search for other papers by Severine Mazaud-Guittot in
Google Scholar
PubMed
EHESP-School of Public Health, Rennes, France
Search for other papers by Bernard Jégou in
Google Scholar
PubMed
Inserm (Institut National de la Santé et de la Recherche Médicale), Irset – Inserm, UMR 1085, Rennes, France
Search for other papers by David Møbjerg Kristensen in
Google Scholar
PubMed
remains that the rodents as models comes with intrinsic limitations due to species-specific responses and phenotype and that the effects seen might not necessary be transferable to humans. It has been shown that certain endocrine disruptive chemicals can
Search for other papers by Yiyan Wang in
Google Scholar
PubMed
Search for other papers by Yaoyao Dong in
Google Scholar
PubMed
Search for other papers by Yinghui Fang in
Google Scholar
PubMed
Search for other papers by Yao Lv in
Google Scholar
PubMed
Search for other papers by Qiqi Zhu in
Google Scholar
PubMed
Search for other papers by Xiaoheng Li in
Google Scholar
PubMed
Search for other papers by Qingquan Lian in
Google Scholar
PubMed
Search for other papers by Ren-Shan Ge in
Google Scholar
PubMed
disruption of glucocorticoid-mediated activity that causes adverse consequences on fetal development. The indirect effect via the direct inhibition of HSD11B2 by endocrine disruptors often goes unnoticed. Although some endocrine disruptors are inhibitors of