Search for other papers by Johan G Beun in
Google Scholar
PubMed
Search for other papers by Pia Burman in
Google Scholar
PubMed
Department of Endocrinology, Diabetes and Metabolism, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Olle Kämpe in
Google Scholar
PubMed
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Search for other papers by Stephanie Hahner in
Google Scholar
PubMed
Search for other papers by Jette Kristensen in
Google Scholar
PubMed
Search for other papers by Alida Noordzij in
Google Scholar
PubMed
Search for other papers by Per Dahlqvist in
Google Scholar
PubMed
hormone. Once diagnosed, chronic, daily replacement with glucocorticoids is essential. An adequate hormone replacement dose is considered to be a total of 15–25 mg hydrocortisone (or cortisone acetate 20–35 mg per day) in adults in two to three daily doses
Search for other papers by Annelies van’t Westeinde in
Google Scholar
PubMed
Search for other papers by Leif Karlsson in
Google Scholar
PubMed
Search for other papers by Valeria Messina in
Google Scholar
PubMed
Search for other papers by Lena Wallensteen in
Google Scholar
PubMed
Search for other papers by Manuela Brösamle in
Google Scholar
PubMed
Search for other papers by Giorgio Dal Maso in
Google Scholar
PubMed
Search for other papers by Alessandro Lazzerini in
Google Scholar
PubMed
Search for other papers by Jette Kristensen in
Google Scholar
PubMed
Search for other papers by Diana Kwast in
Google Scholar
PubMed
Search for other papers by Lea Tschaidse in
Google Scholar
PubMed
Search for other papers by Matthias K Auer in
Google Scholar
PubMed
Search for other papers by Hanna F Nowotny in
Google Scholar
PubMed
Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Search for other papers by Svetlana Lajic in
Google Scholar
PubMed
, which is required for the conversion of cholesterol to cortisol and aldosterone, rendering it either partly or completely ineffective ( 2 , 3 ). Patients with classic CAH, therefore, experience glucocorticoid (GC) and mineralocorticoid deficiency
Search for other papers by Avinaash Maharaj in
Google Scholar
PubMed
Search for other papers by Ruth Kwong in
Google Scholar
PubMed
Search for other papers by Jack Williams in
Google Scholar
PubMed
Search for other papers by Christopher Smith in
Google Scholar
PubMed
Search for other papers by Helen Storr in
Google Scholar
PubMed
Search for other papers by Ruth Krone in
Google Scholar
PubMed
Search for other papers by Debora Braslavsky in
Google Scholar
PubMed
Search for other papers by Maria Clemente in
Google Scholar
PubMed
Search for other papers by Nanik Ram in
Google Scholar
PubMed
Search for other papers by Indraneel Banerjee in
Google Scholar
PubMed
Search for other papers by Semra Çetinkaya in
Google Scholar
PubMed
Search for other papers by Federica Buonocore in
Google Scholar
PubMed
Search for other papers by Tülay Güran in
Google Scholar
PubMed
Search for other papers by John C Achermann in
Google Scholar
PubMed
Search for other papers by Louise Metherell in
Google Scholar
PubMed
Search for other papers by Rathi Prasad in
Google Scholar
PubMed
findings reported were assessed against SGPL1 variant, sex, age of endocrine disease presentation and ethnicity of patient. Specifically, cases (reports) were reviewed for details of adrenal disease, including absence/presence of glucocorticoid
Inserm U1016-CNRS UMR8104, Paris, France
Hormonology Department, Cochin Hospital, Paris, France
Search for other papers by Fidéline Bonnet-Serrano in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Radiology Department, Cochin Hospital, Paris, France
Search for other papers by Maxime Barat in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France
Search for other papers by Anna Vaczlavik in
Google Scholar
PubMed
Search for other papers by Anne Jouinot in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France
Search for other papers by Lucas Bouys in
Google Scholar
PubMed
Hormonology Department, Cochin Hospital, Paris, France
INSERM, Physiopathologie et Pharmacotoxicologie Placentaire Humaine : Microbiote Pré & Post natal, Paris, France
Search for other papers by Christelle Laguillier-Morizot in
Google Scholar
PubMed
Search for other papers by Corinne Zientek in
Google Scholar
PubMed
Search for other papers by Catherine Simonneau in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Diabetology Department, Cochin Hospital, Paris, France
Search for other papers by Etienne Larger in
Google Scholar
PubMed
Search for other papers by Laurence Guignat in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France
Search for other papers by Lionel Groussin in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France
Search for other papers by Guillaume Assié in
Google Scholar
PubMed
Hormonology Department, Cochin Hospital, Paris, France
INSERM, Physiopathologie et Pharmacotoxicologie Placentaire Humaine : Microbiote Pré & Post natal, Paris, France
Search for other papers by Jean Guibourdenche in
Google Scholar
PubMed
UR 7537 BioSTM, Paris, France
Search for other papers by Ioannis Nicolis in
Google Scholar
PubMed
Search for other papers by Marie-Claude Menet in
Google Scholar
PubMed
Inserm U1016-CNRS UMR8104, Paris, France
Reference Center for Rare Adrenal Diseases, Endocrinology Department, Cochin Hospital, Paris, France
Search for other papers by Jérôme Bertherat in
Google Scholar
PubMed
April for UL or BL benign adrenocortical tumors and having a Synacthen® (ACTH 1-24) test during hospitalization in this context were included in our study. CAH, primary hyperaldosteronism and the recent use of exogenous glucocorticoids represented
Search for other papers by Deirdre Green in
Google Scholar
PubMed
Search for other papers by Rosemary Dineen in
Google Scholar
PubMed
Search for other papers by Michael W O’Reilly in
Google Scholar
PubMed
Search for other papers by Mark Sherlock in
Google Scholar
PubMed
affecting the normal structure and function of the adrenal gland, leading to a deficiency in glucocorticoid, mineralocorticoid and adrenal androgens ( 2 ). Secondary adrenal insufficiency (SAI) occurs due to impairment of the hypothalamus
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jakob Albrethsen in
Google Scholar
PubMed
Search for other papers by Vassos Neocleous in
Google Scholar
PubMed
Search for other papers by Federico Baronio in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Lise Aksglaede in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Niels Jørgensen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Peter Christiansen in
Google Scholar
PubMed
Pediatric Endocrinology Clinic, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
Search for other papers by Meropi Toumba in
Google Scholar
PubMed
Search for other papers by Pavlos Fanis in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Marie Lindhardt Ljubicic in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
adrenocorticotropic hormone and, thus, an overproduction of adrenal androgens, which may result in virilization, an altered growth pattern, and infertility ( 2 ). Treatment of CAH may comprise life-long replacement therapy with glucocorticoids and mineralocorticoids
Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España
Search for other papers by Jorge Gabriel Ruiz-Sánchez in
Google Scholar
PubMed
Servicio de Endocrinología y Nutrición. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, España
Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, España
Search for other papers by Alfonso Luis Calle-Pascual in
Google Scholar
PubMed
Servicio de Endocrinología y Nutrición. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, España
Search for other papers by Miguel Ángel Rubio-Herrera in
Google Scholar
PubMed
Servicio de Endocrinología y Nutrición. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, España
Search for other papers by María Paz De Miguel Novoa in
Google Scholar
PubMed
Search for other papers by Emilia Gómez-Hoyos in
Google Scholar
PubMed
Servicio de Endocrinología y Nutrición. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, España
Search for other papers by Isabelle Runkle in
Google Scholar
PubMed
nephron. However, the importance of cortisol progressively increases as levels of the glucocorticoid rise to upper limits of normal ( 1 ). MR activation in principal cells leads to the synthesis of amiloride-sensitive epithelial Na+ channels and their
Search for other papers by Rachel Forfar in
Google Scholar
PubMed
Search for other papers by Mashal Hussain in
Google Scholar
PubMed
Search for other papers by Puneet Khurana in
Google Scholar
PubMed
Search for other papers by Jennifer Cook in
Google Scholar
PubMed
Search for other papers by Steve Lewis in
Google Scholar
PubMed
Search for other papers by Dillon Popat in
Google Scholar
PubMed
Search for other papers by David Jackson in
Google Scholar
PubMed
Search for other papers by Ed McIver in
Google Scholar
PubMed
Search for other papers by Jeff Jerman in
Google Scholar
PubMed
Search for other papers by Debra Taylor in
Google Scholar
PubMed
Search for other papers by Adrian JL Clark in
Google Scholar
PubMed
Search for other papers by Li F Chan in
Google Scholar
PubMed
vasopressin. ACTH then acts on the adrenal glands to produce glucocorticoids and cortisol in humans. Cortisol negatively feeds back at the level of the pituitary gland and hypothalamus to inhibit further production and release ACTH. The melanocortins act
Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
Search for other papers by Timothy J Morris in
Google Scholar
PubMed
Search for other papers by Andrew Whatmore in
Google Scholar
PubMed
Search for other papers by Laura Hamilton in
Google Scholar
PubMed
Search for other papers by Beverly Hird in
Google Scholar
PubMed
Search for other papers by Eric S Kilpatrick in
Google Scholar
PubMed
Search for other papers by Lesley Tetlow in
Google Scholar
PubMed
Search for other papers by Peter Clayton in
Google Scholar
PubMed
Introduction Patients with adrenal insufficiency are treated with glucocorticoid and mineralocorticoid replacement ( 1 , 2 ). Plasma renin measured as either plasma renin activity (PRA) or plasma renin concentration (PRC) is used to evaluate
Search for other papers by Dafydd Aled Rees in
Google Scholar
PubMed
Search for other papers by Deborah P Merke in
Google Scholar
PubMed
Search for other papers by Wiebke Arlt in
Google Scholar
PubMed
Search for other papers by Aude Brac De La Perriere in
Google Scholar
PubMed
Search for other papers by Angelica Linden Hirschberg in
Google Scholar
PubMed
Search for other papers by Anders Juul in
Google Scholar
PubMed
Search for other papers by John Newell-Price in
Google Scholar
PubMed
Search for other papers by Alessandro Prete in
Google Scholar
PubMed
Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Search for other papers by Nike M Stikkelbroeck in
Google Scholar
PubMed
Search for other papers by Philippe A Touraine in
Google Scholar
PubMed
Search for other papers by Alex Lewis in
Google Scholar
PubMed
Search for other papers by John Porter in
Google Scholar
PubMed
Search for other papers by Helen Coope in
Google Scholar
PubMed
Search for other papers by Richard J Ross in
Google Scholar
PubMed
adrenal androgens ( 1 ). To address this, clinicians have used a variety of treatment regimens, including the use of a higher dose of glucocorticoid at night in a reverse circadian treatment pattern. A recent comparison, using a higher dose of