Search for other papers by Cheryl M Isherwood in
Google Scholar
PubMed
Search for other papers by M Denise Robertson in
Google Scholar
PubMed
Search for other papers by Debra J Skene in
Google Scholar
PubMed
Search for other papers by Jonathan D Johnston in
Google Scholar
PubMed
Introduction Many aspects of endocrinology and metabolism exhibit 24-h rhythms that are driven by an endogenous circadian timing system ( 1 , 2 , 3 ). This circadian system is comprised of a central light-entrained clock in the
Search for other papers by Jessica S Jarmasz in
Google Scholar
PubMed
Search for other papers by Yan Jin in
Google Scholar
PubMed
Search for other papers by Hana Vakili in
Google Scholar
PubMed
Search for other papers by Peter A Cattini in
Google Scholar
PubMed
has been heavily studied ( 2 ). Serum levels of hGH vary considerably over the course of the day and during the night as it is dependent on a variety of factors including (and not limited to) the circadian rhythm, sleep–wake cycle, diet, metabolism
Search for other papers by Mohammed S Albreiki in
Google Scholar
PubMed
Search for other papers by Benita Middleton in
Google Scholar
PubMed
Search for other papers by Shelagh M Hampton in
Google Scholar
PubMed
Introduction Artificial light exposure at night has become commonplace throughout the developed world ( 1 , 2 ). Light has been linked to various complex mechanisms such as the synchronisation of the circadian system ( 3 ). Circadian rhythms
Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
Search for other papers by Robert Maidstone in
Google Scholar
PubMed
Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, UK
Search for other papers by Martin K Rutter in
Google Scholar
PubMed
Oxford Liver Unit, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, UK
Search for other papers by Thomas Marjot in
Google Scholar
PubMed
NIHR Oxford Health Biomedical Research Centre, and NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
Search for other papers by David W Ray in
Google Scholar
PubMed
NIHR Oxford Health Biomedical Research Centre, and NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
Search for other papers by Matthew Baxter in
Google Scholar
PubMed
nucleus (SCN). The SCN receives light information from the retina. The timekeeping mechanism is composed of a transcriptional–translational feedback loop, which has an intrinsic period of approximately 24 h. Circadian rhythms are critically important for
Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Rome, Italy
Search for other papers by Carlo Cinque in
Google Scholar
PubMed
Search for other papers by Manuela Zinni in
Google Scholar
PubMed
Search for other papers by Anna Rita Zuena in
Google Scholar
PubMed
Search for other papers by Chiara Giuli in
Google Scholar
PubMed
Search for other papers by Sebastiano G Alemà in
Google Scholar
PubMed
Search for other papers by Assia Catalani in
Google Scholar
PubMed
Search for other papers by Paola Casolini in
Google Scholar
PubMed
Search for other papers by Roberto Cozzolino in
Google Scholar
PubMed
that the exposure to EE ( 25 ) or to the odour of a phobic stimulus such as predator scent ( 26 ) induces an increase of plasma corticosterone concentrations in rats. We also assessed FCM circadian rhythm in socially isolated male and female rats in
Search for other papers by Patricia Arroyo Tardio in
Google Scholar
PubMed
Search for other papers by Gabriela Baldini in
Google Scholar
PubMed
University Clinic of Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
Search for other papers by Eleonora Seelig in
Google Scholar
PubMed
Introduction The hypothalamopituitary–adrenal (HPA) axis tightly regulates cortisol secretion ( 1 ). Cortisol is secreted in a circadian rhythm with a brisk increase upon awakening and a nadir around midnight ( 1 ). Food is an external factor
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Carlijn A Hoekx in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Department of Nursing Physiotherapy and Medicine, SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
Biomedical Research Unit, Torrecárdenas University Hospital, Almería, Spain
CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
Search for other papers by Borja Martinez-Tellez in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Maaike E Straat in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Magdalena M A Verkleij in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Mirjam Kemmeren in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Sander Kooijman in
Google Scholar
PubMed
Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo Building, Huddinge, Sweden
Search for other papers by Martin Uhrbom in
Google Scholar
PubMed
Search for other papers by Saskia C A de Jager in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Patrick C N Rensen in
Google Scholar
PubMed
Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
Search for other papers by Mariëtte R Boon in
Google Scholar
PubMed
characteristics of this cohort has been extensively described elsewhere ( 12 ). To study the influence of circadian rhythm on cold-induced changes in serum GDF15 and FGF21 levels, a general linear model with repeated measures was used, with two within
Search for other papers by L Bahler in
Google Scholar
PubMed
Search for other papers by H J Verberne in
Google Scholar
PubMed
Search for other papers by E Brakema in
Google Scholar
PubMed
Search for other papers by R Tepaske in
Google Scholar
PubMed
Search for other papers by J Booij in
Google Scholar
PubMed
Search for other papers by J B Hoekstra in
Google Scholar
PubMed
Search for other papers by F Holleman in
Google Scholar
PubMed
patients with diabetes mellitus type 2, whereas in lean subjects, there is no pathological condition. Secondly, the timing of the bromocriptine may have interfered with the normal circadian dopamine rhythm ( 12 , 13 , 14 ). The aim of this clinical
Search for other papers by Kim K B Clemmensen in
Google Scholar
PubMed
Search for other papers by Jonas S Quist in
Google Scholar
PubMed
Search for other papers by Dorte Vistisen in
Google Scholar
PubMed
Danish Diabetes Academy, Odense, Denmark
Search for other papers by Daniel R Witte in
Google Scholar
PubMed
Search for other papers by Anna Jonsson in
Google Scholar
PubMed
Search for other papers by Oluf Pedersen in
Google Scholar
PubMed
Search for other papers by Torben Hansen in
Google Scholar
PubMed
Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jens J Holst in
Google Scholar
PubMed
Search for other papers by Torsten Lauritzen in
Google Scholar
PubMed
National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
Search for other papers by Marit E Jørgensen in
Google Scholar
PubMed
Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Signe Torekov in
Google Scholar
PubMed
Search for other papers by Kristine Færch in
Google Scholar
PubMed
A LECesi L Guidone C Nanni G Holst JJ . Circadian rhythms of GIP and GLP1 in glucose-tolerant and in type 2 diabetic patients after biliopancreatic diversion . Diabetologia 2009 52 873 – 881 . ( https://doi.org/10.1007/s00125
Search for other papers by Carla Scaroni in
Google Scholar
PubMed
Search for other papers by Nora M Albiger in
Google Scholar
PubMed
Search for other papers by Serena Palmieri in
Google Scholar
PubMed
Search for other papers by Davide Iacuaniello in
Google Scholar
PubMed
Search for other papers by Chiara Graziadio in
Google Scholar
PubMed
Search for other papers by Luca Damiani in
Google Scholar
PubMed
Search for other papers by Marialuisa Zilio in
Google Scholar
PubMed
Search for other papers by Antonio Stigliano in
Google Scholar
PubMed
Search for other papers by Annamaria Colao in
Google Scholar
PubMed
Search for other papers by Rosario Pivonello in
Google Scholar
PubMed
Search for other papers by the Altogether to Beat Cushing’s Syndrome (ABC) study group in
Google Scholar
PubMed
suspected CS was confirmed by the lack of cortisol suppression after 1 mg dexamethasone (10 µg/dL, n.v. <1.8) and the absence of a cortisol circadian rhythm (midnight serum cortisol, MserC, 12 µg/dL; n.v. <7.5). Which clinical features are the