Search Results
You are looking at 1 - 10 of 67 items for
- Abstract: Menopause x
- Abstract: Osteo* x
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Elinor Chelsom Vogt in
Google Scholar
PubMed
Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
Search for other papers by Francisco Gómez Real in
Google Scholar
PubMed
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Eystein Sverre Husebye in
Google Scholar
PubMed
Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Sigridur Björnsdottir in
Google Scholar
PubMed
Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland
Search for other papers by Bryndis Benediktsdottir in
Google Scholar
PubMed
Search for other papers by Randi Jacobsen Bertelsen in
Google Scholar
PubMed
Search for other papers by Pascal Demoly in
Google Scholar
PubMed
Search for other papers by Karl Anders Franklin in
Google Scholar
PubMed
Search for other papers by Leire Sainz de Aja Gallastegui in
Google Scholar
PubMed
Search for other papers by Francisco Javier Callejas González in
Google Scholar
PubMed
Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
Search for other papers by Joachim Heinrich in
Google Scholar
PubMed
Search for other papers by Mathias Holm in
Google Scholar
PubMed
Search for other papers by Nils Oscar Jogi in
Google Scholar
PubMed
Search for other papers by Benedicte Leynaert in
Google Scholar
PubMed
Search for other papers by Eva Lindberg in
Google Scholar
PubMed
Search for other papers by Andrei Malinovschi in
Google Scholar
PubMed
Albacete Faculty of Medicine, Castilla-La Mancha University, Albacete, Spain
Search for other papers by Jesús Martínez-Moratalla in
Google Scholar
PubMed
Search for other papers by Raúl Godoy Mayoral in
Google Scholar
PubMed
Search for other papers by Anna Oudin in
Google Scholar
PubMed
Search for other papers by Antonio Pereira-Vega in
Google Scholar
PubMed
Search for other papers by Chantal Raherison Semjen in
Google Scholar
PubMed
The National Research Center for the Working Environment, Copenhagen, Denmark
Search for other papers by Vivi Schlünssen in
Google Scholar
PubMed
Search for other papers by Kai Triebner in
Google Scholar
PubMed
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Marianne Øksnes in
Google Scholar
PubMed
Objective
To investigate markers of premature menopause (<40 years) and specifically the prevalence of autoimmune primary ovarian insufficiency (POI) in European women.
Design
Postmenopausal women were categorized according to age at menopause and self-reported reason for menopause in a cross-sectional analysis of 6870 women.
Methods
Variables associated with the timing of menopause and hormone measurements of 17β-estradiol and follicle-stimulating hormone were explored using multivariable logistic regression analysis. Specific immunoprecipitating assays of steroidogenic autoantibodies against 21-hydroxylase (21-OH), side-chain cleavage enzyme (anti-SCC) and 17alpha-hydroxylase (17 OH), as well as NACHT leucine-rich-repeat protein 5 were used to identify women with likely autoimmune POI.
Results
Premature menopause was identified in 2.8% of women, and these women had higher frequencies of nulliparity (37.4% vs 19.7%), obesity (28.7% vs 21.4%), osteoporosis (17.1% vs 11.6%), hormone replacement therapy (59.1% vs 36.9%) and never smokers (60.1% vs 50.9%) (P < 0.05), compared to women with menopause ≥40 years. Iatrogenic causes were found in 91 (47%) and non-ovarian causes in 27 (14%) women, while 77 (39%) women were classified as POI of unknown cause, resulting in a 1.1% prevalence of idiopathic POI. After adjustments nulliparity was the only variable significantly associated with POI (odds ratio 2.46; 95% CI 1.63–3.42). Based on the presence of autoantibodies against 21 OH and SCC, 4.5% of POI cases were of likely autoimmune origin.
Conclusion
Idiopathic POI affects 1.1% of all women and almost half of the women with premature menopause. Autoimmunity explains 4.5% of these cases judged by positive steroidogenic autoantibodies.
Faculté de Chirurgie Dentaire, Université de Toulouse III, Toulouse, France
Search for other papers by Emmanuelle Noirrit in
Google Scholar
PubMed
Search for other papers by Mélissa Buscato in
Google Scholar
PubMed
Search for other papers by Marion Dupuis in
Google Scholar
PubMed
CHU de Toulouse, Laboratoire d’Hématologie, Toulouse, France
Search for other papers by Bernard Payrastre in
Google Scholar
PubMed
Search for other papers by Coralie Fontaine in
Google Scholar
PubMed
Search for other papers by Jean-François Arnal in
Google Scholar
PubMed
Faculté de Chirurgie Dentaire, Université de Toulouse III, Toulouse, France
Search for other papers by Marie-Cécile Valera in
Google Scholar
PubMed
Estrogen–progestin therapy was previously considered as the standard of care for managing bothersome symptoms associated with menopause, but it increases risks of breast cancer and of thromboembolism. The combination of conjugated estrogen (CE) with bazedoxifene (BZA) named tissue-selective estrogen complex (TSEC) was designed to minimize or even abrogate the undesirable effects on breast, while maintaining the beneficial effects such as prevention of osteoporosis and suppression of climacteric symptoms. The risk on thromboembolism associated with TSEC is unknown, although the clinical available data are reassuring. The aim of this study was to define the impact of a chronic administration of CE, BZA or CE + BZA on hemostasis and thrombosis in ovariectomized mice. As expected, CE, but not BZA neither CE + BZA, induced uterine and vagina hypertrophy. As previously demonstrated for 17β-estradiol (E2), we found that CE (i) increased tail-bleeding time, (ii) prevented occlusive thrombus formation in injured carotid artery and (iii) protected against collagen/epinephrine-induced thromboembolism. Thus, whereas BZA antagonized CE action on reproductive tissues, it had no impact on the effect of CE on hemostasis, thromboembolism and arterial thrombosis in mice. CE + BZA shared the anti-thrombotic actions of CE in these mouse models. If a similar process is at work in women, CE combined with BZA could contribute to minimize the risk of thrombosis associated with hormone replacement therapy.
Search for other papers by Keina Nishio in
Google Scholar
PubMed
Search for other papers by Akiko Tanabe in
Google Scholar
PubMed
Search for other papers by Risa Maruoka in
Google Scholar
PubMed
Search for other papers by Kiyoko Nakamura in
Google Scholar
PubMed
Search for other papers by Masaaki Takai in
Google Scholar
PubMed
Search for other papers by Tatsuharu Sekijima in
Google Scholar
PubMed
Search for other papers by Satoshi Tunetoh in
Google Scholar
PubMed
Search for other papers by Yoshito Terai in
Google Scholar
PubMed
Search for other papers by Masahide Ohmichi in
Google Scholar
PubMed
Objective
Although surgical menopause may increase the risks of osteoporosis, few studies have investigated the influence of chemotherapy and radiation therapy. The aim of this study is to evaluate the effects of treatments for gynecological malignancies on bone mineral density (BMD).
Methods
This study enrolled 35 premenopausal women (15 ovarian cancers (OCs), 9 endometrial cancers (ECs), and 11 cervical cancers (CCs)) who underwent surgical treatment that included bilateral oophorectomy with or without adjuvant platinum-based chemotherapy in OC and EC patients, or concurrent chemo-radiation therapy (CCRT) in CC patients according to the established protocols at the Osaka Medical College Hospital between 2006 and 2008. The BMD of the lumbar spine (L1–L4) was measured by dual-energy X-ray absorptiometry, and urine cross-linked telopeptides of type I collagen (NTx) and bone alkaline phosphatase (BAP) were assessed for evaluation of bone resorption and bone formation respectively. These assessments were performed at baseline and 12 months after treatment.
Results
Although the serum BAP was significantly increased only in the CC group, a rapid increase in the bone resorption marker urinary NTx was observed in all groups. The BMD, 12 months after CCRT was significantly decreased in the CC group at 91.9±5.9% (P<0.05 in comparison to the baseline).
Conclusion
This research suggests that anticancer therapies for premenopausal women with gynecological malignancies increase bone resorption and may reduce BMD, particularly in CC patients who have received CCRT. Therefore, gynecologic cancer survivors should be educated about these potential risks and complications.
Search for other papers by Alessandro Brancatella in
Google Scholar
PubMed
Search for other papers by Claudio Marcocci in
Google Scholar
PubMed
Thyroid hormones stimulate bone turnover in adults by increasing osteoclastic bone resorption. TSH suppressive therapy is usually applied in patients with differentiated thyroid cancer (DTC) to improve the disease outcome. Over the last decades several authors have closely monitored the potential harm suffered by the skeletal system. Several studies and meta-analyses have shown that chronic TSH suppressive therapy is safe in premenopausal women and men. Conversely, in postmenopausal women TSH suppressive therapy is associated with a decrease of bone mineral density, deterioration of bone architecture (quantitative CT, QCT; trabecular bone score, TBS), and, possibly, an increased risk of fractures. The TSH receptor is expressed in bone cells and the results of experimental studies in TSH receptor knockout mice and humans on whether low TSH levels, as opposed to solely high thyroid hormone levels, might contribute to bone loss in endogenous or exogenous thyrotoxicosis remain controversial. Recent guidelines on the use of TSH suppressive therapy in patients with DTC give value not only to its benefit on the outcome of the disease, but also to the risks associated with exogenous thyrotoxicosis, namely menopause, osteopenia or osteoporosis, age >60 years, and history of atrial fibrillation. Bone health (BMD and/or preferably TBS) should be evaluated in postmenopausal women under chronic TSH suppressive therapy or in those patients planning to be treated for several years. Antiresorptive therapy could also be considered in selected cases (increased risk of fracture or significant decline of BMD/TBS during therapy) to prevent bone loss.
Search for other papers by Nancy Martini in
Google Scholar
PubMed
Search for other papers by Lucas Streckwall in
Google Scholar
PubMed
Search for other papers by Antonio Desmond McCarthy in
Google Scholar
PubMed
In post-menopausal women, aged individuals, and patients with diabetes mellitus or chronic renal disease, bone mineral density (BMD) decreases while the vasculature accumulates arterial calcifications (ACs). AC can be found in the tunica intima and/or in the tunica media. Prospective studies have shown that patients with initially low BMD and/or the presence of fragility fractures have at follow-up a significantly increased risk for coronary and cerebrovascular events and for overall cardiovascular mortality. Similarly, patients presenting with abdominal aorta calcifications (an easily quantifiable marker of vascular pathology) show a significant decrease in the BMD (and an increase in the fragility) of bones irrigated by branches of the abdominal aorta, such as the hip and lumbar spine. AC induction is an ectopic tissue biomineralization process promoted by osteogenic transdifferentiation of vascular smooth muscle cells as well as by local and systemic secreted factors. In many cases, the same regulatory molecules modulate bone metabolism but in reverse. Investigation of animal and in vitro models has identified several potential mechanisms for this reciprocal bone–vascular regulation, such as vitamin K and D sufficiency, advanced glycation end-products–RAGE interaction, osteoprotegerin/RANKL/RANK, Fetuin A, oestrogen deficiency and phytooestrogen supplementation, microbiota and its relation to diet, among others. Complete elucidation of these potential mechanisms, as well as their clinical validation via controlled studies, will provide a basis for pharmacological intervention that could simultaneously promote bone and vascular health.
Search for other papers by Panagiotis Anagnostis in
Google Scholar
PubMed
Search for other papers by Irene Lambrinoudaki in
Google Scholar
PubMed
Search for other papers by John C Stevenson in
Google Scholar
PubMed
Search for other papers by Dimitrios G Goulis in
Google Scholar
PubMed
Cardiovascular disease (CVD) is of major concern in women entering menopause. The changing hormonal milieu predisposes them to increased CVD risk, due to a constellation of risk factors, such as visceral obesity, atherogenic dyslipidemia, dysregulation in glucose homeostasis, non-alcoholic fatty liver disease and arterial hypertension. However, an independent association of menopause per se with increased risk of CVD events has only been proven for early menopause (<45 years). Menopausal hormone therapy (MHT) ameliorates most of the CVD risk factors mentioned above. Transdermal estrogens are the preferable regimen, since they do not increase triglyceride concentrations and they are not associated with increased risk of venous thromboembolic events (VTE). Although administration of MHT should be considered on an individual basis, MHT may reduce CVD morbidity and mortality, if commenced during the early postmenopausal period (<60 years or within ten years since the last menstrual period). In women with premature ovarian insufficiency (POI), MHT should be administered at least until the average age of menopause (50–52 years). MHT is contraindicated in women with a history of VTE and is not currently recommended for the sole purpose of CVD prevention. The risk of breast cancer associated with MHT is generally low and is mainly conferred by the progestogen. Micronized progesterone and dydrogesterone are associated with lower risk compared to other progestogens.
Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon, USA
Search for other papers by Henryk F Urbanski in
Google Scholar
PubMed
Search for other papers by Kevin Mueller in
Google Scholar
PubMed
Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, Oregon, USA
Search for other papers by Cynthia L Bethea in
Google Scholar
PubMed
Like women, old female rhesus macaques undergo menopause and show many of the same age-associated changes, including perturbed activity/rest cycles and altered circulating levels of many hormones. Previous studies showed that administration of an estrogen agonist increased activity in female monkeys, that hormone therapy (HT) increased activity in postmenopausal women and that obesity decreased activity in women. The present study sought to determine if postmenopausal activity and circulating hormone levels also respond to HT when monkeys are fed a high-fat, high-sugar Western style diet (WSD). Old female rhesus macaques were ovo-hysterectomized (OvH) to induce surgical menopause and fed a WSD for 2 years. Half of the animals received estradiol-17β (E), beginning immediately after OvH, while the other half received placebo. Animals in both groups showed an increase in body weight and a decrease in overall activity levels. These changes were associated with a rise in both daytime and nocturnal serum leptin concentrations, but there was no change in serum concentrations of either cortisol or dehydroepiandrosterone sulfate (DHEAS). These data suggest that 2 years of HT has little or no effect on locomotor activity or circadian hormone patterns in menopausal macaques fed an obesogenic diet.
Search for other papers by Shuang Ye in
Google Scholar
PubMed
Search for other papers by Yuanyuan Xu in
Google Scholar
PubMed
Search for other papers by Jiehao Li in
Google Scholar
PubMed
Search for other papers by Shuhui Zheng in
Google Scholar
PubMed
Search for other papers by Peng Sun in
Google Scholar
PubMed
Search for other papers by Tinghuai Wang in
Google Scholar
PubMed
The role of G protein-coupled estrogen receptor 1 (GPER) signaling, including promotion of Ezrin phosphorylation (which could be activated by estrogen), has not yet been clearly identified in triple-negative breast cancer (TNBC). This study aimed to evaluate the prognostic value of GPER and Ezrin in TNBC patients. Clinicopathologic features including age, menopausal status, tumor size, nuclear grade, lymph node metastasis, AJCC TNM stage, and ER, PR and HER-2 expression were evaluated from 249 TNBC cases. Immunohistochemical staining of GPER and Ezrin was performed on TNBC pathological sections. Kaplan–Meier analyses, as well as logistic regressive and Cox regression model tests were applied to evaluate the prognostic significance between different subgroups. Compared to the GPER-low group, the GPER-high group exhibited higher TNM staging (P = 0.021), more death (P < 0.001), relapse (P < 0.001) and distant events (P < 0.001). Kaplan–Meier analysis showed that GPER-high patients had a decreased OS (P < 0.001), PFS (P < 0.001), LRFS (P < 0.001) and DDFS (P < 0.001) than GPER-low patients. However, these differences in prognosis were not statistically significant in post-menopausal patients (OS, P = 0.8617; PFS, P = 0.1905; LRFS, P = 0.4378; DDFS, P = 0.2538). There was a significant positive correlation between GPER and Ezrin expression level (R = 0.508, P < 0.001) and the effect of Ezrin on survival prognosis corresponded with GPER. Moreover, a multivariable analysis confirmed that GPER and Ezrin level were both significantly associated with poor DDFS (HR: 0.346, 95% CI 0.182–0.658, P = 0.001; HR: 0.320, 95% CI 0.162–0.631, P = 0.001). Thus, overexpression of GPER and Ezrin may contribute to aggressive behavior and indicate unfavorable prognosis in TNBC; this may correspond to an individual’s estrogen levels.
Search for other papers by Kristin Ottarsdottir in
Google Scholar
PubMed
Search for other papers by Margareta Hellgren in
Google Scholar
PubMed
Search for other papers by David Bock in
Google Scholar
PubMed
Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
Search for other papers by Anna G Nilsson in
Google Scholar
PubMed
Search for other papers by Bledar Daka in
Google Scholar
PubMed
Purpose
We aimed to investigate the association between SHBG and the homeostatic model assessment of insulin resistance (HOMA-Ir) in men and women in a prospective observational study.
Methods
The Vara-Skövde cohort is a random population of 2816 participants living in southwestern Sweden, aged 30–74. It was recruited between 2002 and 2005, and followed up in 2012–2014. After excluding participants on insulin therapy or hormone replacement therapy, 1193 individuals (649 men, 544 women) were included in the present study. Fasting blood samples were collected at both visits and stored in biobank. All participants were physically examined by a trained nurse. SHBG was measured with immunoassay technique. Linear regressions were computed to investigate the association between SHBG and HOMA-Ir both in cross-sectional and longitudinal analyses, adjusting for confounding factors.
Results
The mean follow-up time was 9.7 ± 1.4 years. Concentrations of SHBG were significantly inversely associated with log transformed HOMA-Ir in all groups with estimated standardized slopes (95% CI): men: −0.20 (−0.3;−0.1), premenopausal women: −0.26 (−0.4;−0.2), postmenopausal women: −0.13 (−0.3;−0.0) at visit 1. At visit 2 the results were similar. When comparing the groups, a statistically significant difference was found between men and post-menopausal women (0.12 (0.0;0.2) P value = 0.04). In the fully adjusted model, SHBG at visit 1 was also associated with HOMA-Ir at visit 2, and the estimated slopes were −0.16 (−0.2;−0.1), −0.16 (−0.3;−0.1) and −0.07 (−0.2;0.0) for men, premenopausal and postmenopausal women, respectively.
Main conclusion
Levels of SHBG predicted the development of insulin resistance in both men and women, regardless of menopausal state.
Search for other papers by Clarissa Souza Barthem in
Google Scholar
PubMed
Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Search for other papers by Camila Lüdke Rossetti in
Google Scholar
PubMed
Search for other papers by Denise P Carvalho in
Google Scholar
PubMed
Search for other papers by Wagner Seixas da-Silva in
Google Scholar
PubMed
Estradiol has been used to prevent metabolic diseases, bone loss and menopausal symptoms, even though it might raise the risk of cancer. Metformin is usually prescribed for type 2 diabetes mellitus and lowers food intake and body mass while improving insulin resistance and the lipid profile. Ovariectomized rats show increased body mass, insulin resistance and changes in the lipid profile. Thus, the aim of this work was to evaluate whether metformin could prevent the early metabolic dysfunction that occurs early after ovariectomy. Female Wistar rats were divided into the following groups: SHAM-operated (SHAM), ovariectomized (OVX), ovariectomized + estradiol (OVX + E2) and ovariectomized + metformin (OVX + M). Treatment with metformin diminished approximately 50% of the mass gain observed in ovariectomized animals and reduced both the serum and hepatic triglyceride levels. The hepatic levels of phosphorylated AMP-activated protein kinase (pAMPK) decreased after OVX, and the expression of the inactive form of hepatic acetyl-CoA carboxylase (ACC) was also reduced. Metformin was able to increase the levels of pAMPK in the liver of OVX animals, sustaining the balance between the inactive and total forms of ACC. Estradiol effects were similar to those of metformin but with different proportions. Our results suggest that metformin ameliorates the early alterations of metabolic parameters and rescues hepatic AMPK phosphorylation and ACC inactivation observed in ovariectomized rats.