Search Results

You are looking at 11 - 20 of 135 items for :

  • Abstract: Menopause x
  • Abstract: Osteo* x
  • Abstract: Vitamin D x
Clear All Modify Search
Barbara J Boucher Blizard Institute, Barts & The London school of Medicine & Dentistry, Queen Mary University of London, London, UK

Search for other papers by Barbara J Boucher in
Google Scholar
PubMed
Close

Our knowledge of vitamin D has come a long way since the 100 years it took for doctors to accept, between 1860 and 1890, that both sunlight and cod liver oil (a well-known folk remedy) cured and prevented rickets. Vitamins D2/D3 were discovered exactly a hundred years ago, and over the last 50 years vitamin D has been found to have many effects on virtually all human tissues and not just on bone health, while mechanisms affecting the actions of vitamin D at the cellular level are increasingly understood, but deficiency persists globally. Observational studies in humans have shown that better provision of vitamin D is strongly associated, dose-wise, with reductions in current and future health risks in line with the known actions of vitamin D. Randomised controlled trials, commonly accepted as providing a ‘gold standard’ for assessing the efficacy of new forms of treatment, have frequently failed to provide supportive evidence for the expected health benefits of supplementation. Such RCTs, however, have used designs evolved for testing drugs while vitamin D is a nutrient; the appreciation of this difference is critical to identifying health benefits from existing RCT data and for improving future RCT design. This report aims, therefore, to provide a brief overview of the evidence for a range of non-bony health benefits of vitamin D repletion; to discuss specific aspects of vitamin D biology that can confound RCT design and how to allow for them.

Open access
Johanna Öberg Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway

Search for other papers by Johanna Öberg in
Google Scholar
PubMed
Close
,
Rolf Jorde Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway

Search for other papers by Rolf Jorde in
Google Scholar
PubMed
Close
,
Yngve Figenschau Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
Diagnostic Clinic, University Hospital of North Norway, Tromso, Norway

Search for other papers by Yngve Figenschau in
Google Scholar
PubMed
Close
,
Per Medbøe Thorsby Hormone Laboratory, Department of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway

Search for other papers by Per Medbøe Thorsby in
Google Scholar
PubMed
Close
,
Sandra Rinne Dahl Hormone Laboratory, Department of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway

Search for other papers by Sandra Rinne Dahl in
Google Scholar
PubMed
Close
,
Anne Winther Division of Neurosciences, Orthopedics and Rehabilitation Services, University Hospital of North Norway, Tromso, Norway

Search for other papers by Anne Winther in
Google Scholar
PubMed
Close
, and
Guri Grimnes Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
Division of Internal Medicine, University Hospital of North Norway, Tromso, Norway

Search for other papers by Guri Grimnes in
Google Scholar
PubMed
Close

Objective

Combined hormonal contraceptive (CHC) use has been associated with higher total 25-hydroxyvitamin D (25(OH)D) levels. Here, we investigate the relation between CHC use and vitamin D metabolism to elucidate its clinical interpretation.

Methods

The cross-sectional Fit Futures 1 included 1038 adolescents. Here, a subgroup of 182 girls with available 25(OH)D, 1,25-dihydroxyvitamin D (1,25(OH)2D), 24,25-dihydroxyvitamin D (24,25(OH)2D), vitamin D-binding protein (DBP) and measured free 25(OH)D levels, in addition to parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), was investigated. Vitamin D metabolites were compared between girls using (CHC+) and not using CHC (CHC−). Further, the predictability of CHC on 25(OH)D levels was assessed in a multiple regression model including lifestyle factors. The ratios 1,25(OH)2D/25(OH)D and 24,25(OH)2D/25(OH)D (vitamin D metabolite ratio (VMR)) in relation to 25(OH)D were presented in scatterplots.

Results

CHC+ (n  = 64; 35% of the girls) had higher 25(OH)D levels (mean ± s.d., 60.3 ± 22.2) nmol/L) than CHC- (n  = 118; 41.8 ± 19.3 nmol/L), P -values <0.01. The differences in 25(OH)D levels between CHC+ and CHC− were attenuated but remained significant after the adjustment of lifestyle factors. CHC+ also had higher levels of 1,25(OH)2D, 24,25(OH)2D, DBP and calcium than CHC−, whereas 1,25(OH)2D/25(OH)D, PTH, FGF23 and albumin were significantly lower. Free 25(OH)D and VMR did not statistically differ, and both ratios appeared similar in relation to 25(OH)D, irrespective of CHC status.

Conclusion

This confirms a clinical impact of CHC on vitamin D levels in adolescents. Our observations are likely due to an increased DBP-concentration, whereas the free 25(OH)D appears unaltered.

Open access
Julia Kubiak Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway

Search for other papers by Julia Kubiak in
Google Scholar
PubMed
Close
,
Per Medbøe Thorsby Department of Medical Biochemistry, Per Medbøe Thorsby, Hormone Laboratory, Oslo University Hospital, Aker, Norway

Search for other papers by Per Medbøe Thorsby in
Google Scholar
PubMed
Close
,
Elena Kamycheva Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway

Search for other papers by Elena Kamycheva in
Google Scholar
PubMed
Close
, and
Rolf Jorde Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway

Search for other papers by Rolf Jorde in
Google Scholar
PubMed
Close

Objective

Low serum 25(OH)D levels are associated with cardiovascular disease (CVD) and some of its risk factors. However, in interventional studies, the effects of vitamin D supplementation have been uncertain, possibly due to inclusion of vitamin D-sufficient subjects. Our aim was therefore to examine effects of vitamin D supplementation on CVD risk factors in vitamin D-insufficient subjects.

Design

Double-blinded randomized controlled trial.

Methods

A 4-month interventional study with high-dose vitamin D (100,000 IU loading dose, followed by 20,000 IU/week) or placebo with measurements of blood pressure, lipids (total-, LDL- and HDL-cholesterol, triglycerides, apolipoproteins A1 and B), and glucose metabolism parameters (blood glucose, HbA1c, serum human receptors for advanced glycation end products (sRAGE), insulin, C-peptide and HOMA-IR).

Results

A total of 422 subjects with mean serum 25(OH)D level 34 nmol/L were included, with 411 subjects completing the study. Serum 25(OH)D levels increased with 56 nmol/L and decreased with 4 nmol/L in the vitamin D and placebo group, respectively. We found no statistically significant differences between the two groups in any of the measured CVD risk factors, except for a minor increase in sRAGE in the vitamin D group. Stratified analyses of subjects with low baseline serum 25(OH)D levels alone, or combined with blood pressure, lipid and HOMA-IR values above the median for the cohort, did not skew the results in favour of vitamin D supplementation.

Conclusion

Supplementation with vitamin D in subjects with baseline vitamin D insufficiency does not improve CVD risk factor profile.

Open access
Raja Padidela Royal Manchester Children’s Hospital and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK

Search for other papers by Raja Padidela in
Google Scholar
PubMed
Close
,
Moira S Cheung Evelina London Children’s Hospital, London, UK

Search for other papers by Moira S Cheung in
Google Scholar
PubMed
Close
,
Vrinda Saraff Birmingham Women’s and Children’s Hospital, Birmingham, UK

Search for other papers by Vrinda Saraff in
Google Scholar
PubMed
Close
, and
Poonam Dharmaraj Alder Hey Children’s NHS Foundation Trust, Liverpool, UK

Search for other papers by Poonam Dharmaraj in
Google Scholar
PubMed
Close

X-linked hypophosphataemia (XLH) is caused by a pathogenic variant in the PHEX gene, which leads to elevated circulating FGF23. High FGF23 causes hypophosphataemia, reduced active vitamin D concentration and clinically manifests as rickets in children and osteomalacia in children and adults. Conventional therapy for XLH includes oral phosphate and active vitamin D analogues but does not specifically treat the underlying pathophysiology of elevated FGF23-induced hypophosphataemia. In addition, adherence to conventional therapy is limited by frequent daily dosing and side effects such as gastrointestinal symptoms, secondary hyperparathyroidism and nephrocalcinosis. Burosumab, a recombinant human IgG1 MAB that binds to and inhibits the activity of FGF23, is administered subcutaneously every 2 weeks. In clinical trials (phase 2 and 3) burosumab was shown to improve phosphate homeostasis that consequently resolves the skeletal/non-skeletal manifestations of XLH. Burosumab was licensed in Europe (February 2018) with the National Institute for Health and Care Excellence, UK approving use within its marketing authorisation in October 2018. In this publication, the British Paediatric and Adolescent Bone Group (BPABG) reviewed current evidence and provide expert recommendations for care pathway and management of XLH with burosumab.

Open access
Rolf Jorde Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway

Search for other papers by Rolf Jorde in
Google Scholar
PubMed
Close
and
Guri Grimnes Tromsø Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway

Search for other papers by Guri Grimnes in
Google Scholar
PubMed
Close

Objective

In addition to its skeletal effects, vitamin D may also be important for health in general. It is uncertain what level of serum 25-hydroxyvitamin D (25(OH)D), marker of vitamin D status, is sufficient for these effects. With decreasing serum 25(OH)D levels there is an increase in serum PTH. The point at which this occurs has been considered as a threshold for vitamin D sufficiency. The thresholds found have varied widely and have mainly been based on observational studies. However, to truly establish a threshold for vitamin D effects, this has to be based on randomized controlled trials (RCTs).

Methods

The study included 2803 subjects from a general health survey, the Tromsø study, and pooled individual person data from five vitamin D intervention studies (n = 1544). Serum parathyroid hormone (PTH) and change in PTH after vitamin D supplementation were related to serum 25(OH)D levels in steps of 25 nmol/L (<24, 25–49, 50–74, 75–99, and >99 nmol/L).

Results

In the Tromsø study, in the females there was a gradual decrease in serum PTH with increasing serum 25(OH)D with no apparent plateau, whereas in the males the decrease in PTH in subjects with serum 25(OH)D >74 nmol/l was marginal. In pooled RCTs, there was a significant reduction in serum PTH by vitamin D supplementation regardless of baseline serum 25(OH)D level.

Conclusions

The use of the serum PTH–25(OH)D relation from observational studies to determine a threshold for vitamin D sufficiency is highly questionable.

Open access
K Amrein Thyroid Endocrinology Osteoporosis Institute Dobnig, Graz, Austria
Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria

Search for other papers by K Amrein in
Google Scholar
PubMed
Close
,
A Papinutti Department of General Surgery, Medical University of Graz, Graz, Austria

Search for other papers by A Papinutti in
Google Scholar
PubMed
Close
,
E Mathew Department of General Surgery, Medical University of Graz, Graz, Austria
Department of General Surgery, St. Elisabeth’s Hospital, Graz, Austria

Search for other papers by E Mathew in
Google Scholar
PubMed
Close
,
G Vila Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria

Search for other papers by G Vila in
Google Scholar
PubMed
Close
, and
D Parekh Clinician Scientist in Critical Care, Birmingham, Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK

Search for other papers by D Parekh in
Google Scholar
PubMed
Close

The prevalence of vitamin D deficiency in intensive care units ranges typically between 40 and 70%. There are many reasons for being or becoming deficient in the ICU. Hepatic, parathyroid and renal dysfunction additionally increases the risk for developing vitamin D deficiency. Moreover, therapeutic interventions like fluid resuscitation, dialysis, surgery, extracorporeal membrane oxygenation, cardiopulmonary bypass and plasma exchange may significantly reduce vitamin D levels. Many observational studies have consistently shown an association between low vitamin D levels and poor clinical outcomes in critically ill adults and children, including excess mortality and morbidity such as acute kidney injury, acute respiratory failure, duration of mechanical ventilation and sepsis. It is biologically plausible that vitamin D deficiency is an important and modifiable contributor to poor prognosis during and after critical illness. Although vitamin D supplementation is inexpensive, simple and has an excellent safety profile, testing for and treating vitamin D deficiency is currently not routinely performed. Overall, less than 800 patients have been included in RCTs worldwide, but the available data suggest that high-dose vitamin D supplementation could be beneficial. Two large RCTs in Europe and the United States, together aiming to recruit >5000 patients, have started in 2017, and will greatly improve our knowledge in this field. This review aims to summarize current knowledge in this interdisciplinary topic and give an outlook on its highly dynamic future.

Open access
Fabienne A U Fox Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

Search for other papers by Fabienne A U Fox in
Google Scholar
PubMed
Close
,
Lennart Koch Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
University for Health Sciences, Medical Informatics and Technology (UMIT TIROL), Tirol, Austria

Search for other papers by Lennart Koch in
Google Scholar
PubMed
Close
,
Monique M B Breteler Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany

Search for other papers by Monique M B Breteler in
Google Scholar
PubMed
Close
, and
N Ahmad Aziz Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany

Search for other papers by N Ahmad Aziz in
Google Scholar
PubMed
Close

Objective

Maintaining muscle function throughout life is critical for healthy ageing. Although in vitro studies consistently indicate beneficial effects of 25-hydroxyvitamin D (25-OHD) on muscle function, findings from population-based studies remain inconclusive. We therefore aimed to examine the association between 25-OHD concentration and handgrip strength across a wide age range and assess potential modifying effects of age, sex and season.

Methods

We analysed cross-sectional baseline data of 2576 eligible participants out of the first 3000 participants (recruited from March 2016 to March 2019) of the Rhineland Study, a community-based cohort study in Bonn, Germany. Multivariate linear regression models were used to assess the relation between 25-OHD levels and grip strength while adjusting for age, sex, education, smoking, season, body mass index, physical activity levels, osteoporosis and vitamin D supplementation.

Results

Compared to participants with deficient 25-OHD levels (<30 nmol/L), grip strength was higher in those with inadequate (30 to <50 nmol/L) and adequate (≥50 to ≤125 nmol/L) levels (ß inadequate = 1.222, 95% CI: 0.377; 2.067, P = 0.005; ß adequate = 1.228, 95% CI: 0.437; 2.019, P = 0.002). Modelling on a continuous scale revealed grip strength to increase with higher 25-OHD levels up to ~100 nmol/L, after which the direction reversed (ß linear = 0.505, 95% CI: 0.179; 0.830, P = 0.002; ß quadratic = –0.153, 95% CI: –0.269; -0.038, P = 0.009). Older adults showed weaker effects of 25-OHD levels on grip strength than younger adults (ß 25OHDxAge = –0.309, 95% CI: –0.594; –0.024, P = 0.033).

Conclusions

Our findings highlight the importance of sufficient 25-OHD levels for optimal muscle function across the adult life span. However, vitamin D supplementation should be closely monitored to avoid detrimental effects.

Open access
J A Tamblyn Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
Birmingham Women’s Foundation Hospital, Edgbaston, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by J A Tamblyn in
Google Scholar
PubMed
Close
,
C Jenkinson Birmingham Women’s Foundation Hospital, Edgbaston, Birmingham, UK

Search for other papers by C Jenkinson in
Google Scholar
PubMed
Close
,
D P Larner Birmingham Women’s Foundation Hospital, Edgbaston, Birmingham, UK

Search for other papers by D P Larner in
Google Scholar
PubMed
Close
,
M Hewison Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by M Hewison in
Google Scholar
PubMed
Close
, and
M D Kilby Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
Birmingham Women’s Foundation Hospital, Edgbaston, Birmingham, UK
Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK

Search for other papers by M D Kilby in
Google Scholar
PubMed
Close

Vitamin D deficiency is common in pregnant women and may contribute to adverse events in pregnancy such as preeclampsia (PET). To date, studies of vitamin D and PET have focused primarily on serum concentrations vitamin D, 25-hydroxyvitamin D3 (25(OH)D3) later in pregnancy. The aim here was to determine whether a more comprehensive analysis of vitamin D metabolites earlier in pregnancy could provide predictors of PET. Using samples from the SCOPE pregnancy cohort, multiple vitamin D metabolites were quantified by liquid chromatography–tandem mass spectrometry in paired serum and urine prior to the onset of PET symptoms. Samples from 50 women at pregnancy week 15 were analysed, with 25 (50%) developing PET by the end of the pregnancy and 25 continuing with uncomplicated pregnancy. Paired serum and urine from non-pregnant women (n = 9) of reproductive age were also used as a control. Serum concentrations of 25(OH)D3, 25(OH)D2, 1,25(OH)2D3, 24,25(OH)2D3 and 3-epi-25(OH)D3 were measured and showed no significant difference between women with uncomplicated pregnancies and those developing PET. As previously reported, serum 1,25(OH)2D3 was higher in all pregnant women (in the second trimester), but serum 25(OH)D2 was also higher compared to non-pregnant women. In urine, 25(OH)D3 and 24,25(OH)2D3 were quantifiable, with both metabolites demonstrating significantly lower (P < 0.05) concentrations of both of these metabolites in those destined to develop PET. These data indicate that analysis of urinary metabolites provides an additional insight into vitamin D and the kidney, with lower urinary 25(OH)D3 and 24,25(OH)2D3 excretion being an early indicator of a predisposition towards developing PET.

Open access
Behnaz Abiri Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Behnaz Abiri in
Google Scholar
PubMed
Close
,
Majid Valizadeh Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Majid Valizadeh in
Google Scholar
PubMed
Close
,
Amirhossein Ramezani Ahmadi Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

Search for other papers by Amirhossein Ramezani Ahmadi in
Google Scholar
PubMed
Close
,
Shirin Amini Department of Nutrition, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran

Search for other papers by Shirin Amini in
Google Scholar
PubMed
Close
,
Mohammad Nikoohemmat Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Mohammad Nikoohemmat in
Google Scholar
PubMed
Close
,
Faeze Abbaspour Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Faeze Abbaspour in
Google Scholar
PubMed
Close
, and
Farhad Hosseinpanah Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Farhad Hosseinpanah in
Google Scholar
PubMed
Close

Objectives

It has not been established whether vitamin D deficiency is associated with anthropometric state; therefore, this systematic review examined the relationship between serum vitamin D levels with anthropometrics and adiposity across different ages.

Methods

Studies that examined vitamin D deficiency with adiposity measures in different age groups were searched in the PubMed, Scopus, Embase, and Google Scholar databases until November 2023. Two investigators independently reviewed titles and abstracts, examined full-text articles, extracted data, and rated the quality in accordance with the Newcastle–Ottawa criteria.

Results

Seventy-two studies, with a total of 59,430 subjects, were included. Of these studies, 27 cross-sectional studies and one longitudinal study (with 25,615 participants) evaluated the possible link between 25(OH)D serum concentrations and anthropometric/adiposity indices in the pediatric population. Forty-two cross-sectional studies and two cohort investigations (with 33,815 participants) investigated the relationship between serum 25(OH)D levels and adiposity measures in adults and/or the elderly population. There is evidence supporting links between vitamin D deficiency and obesity, and revealed an inverse association between vitamin D and adiposity indicators, specifically in female subjects. However, the effects of several confounding factors should also be considered.

Conclusion

Most published studies, most of which were cross-sectional, reported a negative association between vitamin D and female adiposity indicators. Therefore, serum vitamin D levels should be monitored in overweight/obese individuals.

Open access
Mohammed S Razzaque Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA

Search for other papers by Mohammed S Razzaque in
Google Scholar
PubMed
Close

Fibroblast growth factor‐23 (FGF23) controls the homeostasis of both phosphate and vitamin D. Bone-derived FGF23 can suppress the transcription of 1α‐hydroxylase (1α(OH)ase) to reduce renal activation of vitamin D (1,25(OH)2D3). FGF23 can also activate the transcription of 24‐hydroxylase to enhance the renal degradation process of vitamin D. There is a counter-regulation for FGF23 and vitamin D; 1,25(OH)2D3 induces the skeletal synthesis and the release of FGF23, while FGF23 can suppress the production of 1,25(OH)2D3 by inhibiting 1α(OH)ase synthesis. Genetically ablating FGF23 activities in mice resulted in higher levels of renal 1α(OH)ase, which is also reflected in an increased level of serum 1,25(OH)2D3, while genetically ablating 1α(OH)ase activities in mice reduced the serum levels of FGF23. Similar feedback control of FGF23 and vitamin D is also detected in various human diseases. Further studies are required to understand the subcellular molecular regulation of FGF23 and vitamin D in health and disease.

Open access