Search Results
You are looking at 71 - 80 of 84 items for :
- Abstract: Hypoparathyroidism x
- Abstract: Menopause x
- Abstract: Osteo* x
Search for other papers by Gabriella Oliveira Lima in
Google Scholar
PubMed
Search for other papers by Alex Luiz Menezes da Silva in
Google Scholar
PubMed
Search for other papers by Julianne Elba Cunha Azevedo in
Google Scholar
PubMed
Search for other papers by Chirlene Pinheiro Nascimento in
Google Scholar
PubMed
Search for other papers by Luana Rodrigues Vieira in
Google Scholar
PubMed
Search for other papers by Akira Otake Hamoy in
Google Scholar
PubMed
Search for other papers by Luan Oliveira Ferreira in
Google Scholar
PubMed
Search for other papers by Verônica Regina Lobato Oliveira Bahia in
Google Scholar
PubMed
Search for other papers by Nilton Akio Muto in
Google Scholar
PubMed
Search for other papers by Dielly Catrina Favacho Lopes in
Google Scholar
PubMed
Search for other papers by Moisés Hamoy in
Google Scholar
PubMed
Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.
Department of Endocrinology, University of Manchester, School of Medical Sciences, Manchester, UK
Search for other papers by Victoria Chatzimavridou-Grigoriadou in
Google Scholar
PubMed
Department of Endocrinology, University of Manchester, School of Medical Sciences, Manchester, UK
Search for other papers by Lisa H Barraclough in
Google Scholar
PubMed
Search for other papers by Rohit Kochhar in
Google Scholar
PubMed
Search for other papers by Lucy Buckley in
Google Scholar
PubMed
Search for other papers by Nooreen Alam in
Google Scholar
PubMed
Search for other papers by Claire E Higham in
Google Scholar
PubMed
Background
Radiotherapy-related insufficiency fractures (RRIFs) represent a common, burdensome consequence of pelvic radiotherapy. Their underlying mechanisms remain unclear, and data on the effect of osteoporosis are contradictory, with limited studies assessing bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA).
Methods
BMD by DXA (Hologic) scan and fracture risk following pelvic RRIF were retrospectively assessed in 39 patients (median age 68 years) at a tertiary cancer centre. Patient characteristics and treatment history are presented narratively; correlations were explored using univariate regression analyses.
Results
Additional cancer treatments included chemotherapy (n = 31), surgery (n = 20) and brachytherapy (n = 19). Median interval between initiation of radiotherapy and RRIF was 11 (7.5–20.8) and that between RRIF and DXA 3 was (1–6) months. Three patients had normal BMD, 16 had osteopenia and 16 osteoporosis, following World Health Organization classification. Four patients were <40 years at the time of DXA (all Z-scores > –2). Median 10-year risk for hip and major osteoporotic fracture was 3.1% (1.5–5.7) and 11.5% (7.1–13.8), respectively. Only 33.3% of patients had high fracture risk (hip fracture >4% and/or major osteoporotic >20%), and 31% fell above the intervention threshold per National Osteoporosis Guidelines Group (NOGG) guidance (2017). Higher BMD was predicted by lower pelvic radiotherapy dose (only in L3 and L4), concomitant chemotherapy and higher body mass index.
Conclusion
At the time of RRIF, most patients did not have osteoporosis, some had normal BMD and overall had low fracture risk. Whilst low BMD is a probable risk factor, it is unlikely to be the main mechanism underlying RRIFs, and further studies are required to understand the predictive value of BMD.
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Hans Valdemar López Krabbe in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jørgen Holm Petersen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Fertility, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Search for other papers by Louise Laub Asserhøj in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Trine Holm Johannsen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Peter Christiansen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Rikke Beck Jensen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Line Hartvig Cleemann in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Casper P Hagen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Lærke Priskorn in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Niels Jørgensen in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Katharina M Main in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Anders Juul in
Google Scholar
PubMed
International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
Search for other papers by Lise Aksglaede in
Google Scholar
PubMed
Adult patients with Klinefelter syndrome (KS) are characterized by a highly variable phenotype, including tall stature, obesity, and hypergonadotropic hypogonadism, as well as an increased risk of developing insulin resistance, metabolic syndrome, and osteoporosis. Most adults need testosterone replacement therapy (TRT), whereas the use of TRT during puberty has been debated. In this retrospective, observational study, reproductive hormones and whole-body dual-energy x-ray absorptiometry-derived body composition and bone mineral content were standardized to age-related standard deviation scores in 62 patients with KS aged 5.9–20.6 years. Serum concentrations of total testosterone and inhibin B were low, whereas luteinizing hormone and follicle-stimulating hormone were high in patients before TRT. Despite normal body mass index, body fat percentage and the ratio between android fat percentage and gynoid fat percentage were significantly higher in the entire group irrespective of treatment status. In patients evaluated before and during TRT, a tendency toward a more beneficial body composition with a significant reduction in the ratio between android fat percentage and gynoid fat percentage during TRT was found. Bone mineral content (BMC) did not differ from the reference, but BMC corrected for bone area was significantly lower when compared to the reference. This study confirms that patients with KS have an unfavorable body composition and an impaired bone mineral status already during childhood and adolescence. Systematic studies are needed to evaluate whether TRT during puberty will improve these parameters.
Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
Search for other papers by Hsiao-Yun Yeh in
Google Scholar
PubMed
Division of Musculoskeletal Section, Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
Search for other papers by Hung-Ta Hondar Wu in
Google Scholar
PubMed
Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
Search for other papers by Hsiao-Chin Shen in
Google Scholar
PubMed
School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
Search for other papers by Tzu-Hao Li in
Google Scholar
PubMed
Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
Search for other papers by Ying-Ying Yang in
Google Scholar
PubMed
Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
Search for other papers by Kuei-Chuan Lee in
Google Scholar
PubMed
Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
Search for other papers by Yi-Hsuan Lin in
Google Scholar
PubMed
Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
Search for other papers by Chia-Chang Huang in
Google Scholar
PubMed
Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
Search for other papers by Ming-Chih Hou in
Google Scholar
PubMed
Objective
Previous studies have suggested that body mass index (BMI) should be considered when assessing the relationship between fatty liver (FL) and osteoporosis. The aim of this study was to investigate future fracture events in people with FL, focusing on the effect of BMI in both sexes.
Methods
This retrospective cohort study, spanning from 2011 to 2019, enrolled 941 people, including 441 women and 500 men, aged 50 years or older who underwent liver imaging (ultrasound, computed tomography, or magnetic resonance image) and dual-energy X-ray absorptiometry (for bone mineral density measurements). The study examined predictors of osteoporosis in both sexes and the effect of different ranges of BMI (18.5–24, 24–27, and ≥27 kg/m2) on the risk of future fracture events in FL patients.
Results
The average follow-up period was 5.3 years for women and 4.2 years for men. Multivariate analysis identified age and BMI as independent risk factors of osteoporosis in both sexes. Each unit increase in BMI decreased the risk of osteoporosis by ≥10%. In both women and men with FL, a BMI of 24–27 kg/m2 offered protection against future fractures, compared to those without FL and with a BMI of 18.5–24 kg/m2.
Conclusion
The protective effect of a higher BMI against future fractures in middle-aged and elderly female and male patients with FL is not uniform and diminishes beyond certain BMI ranges.
Search for other papers by Milou Cecilia Madsen in
Google Scholar
PubMed
Search for other papers by Martin den Heijer in
Google Scholar
PubMed
Search for other papers by Claudia Pees in
Google Scholar
PubMed
Search for other papers by Nienke R Biermasz in
Google Scholar
PubMed
Search for other papers by Leontine E H Bakker in
Google Scholar
PubMed
Testosterone therapy is the cornerstone in the care of men with hypogonadism and transgender males. Gel and intramuscular injections are most frequently used and are registered and included in the international guidelines. The specific preparation should be selected according to the patient’s preference, cost, availability, and formulation-specific properties. As the majority of men with hypogonadism and transgender males require lifelong treatment with testosterone, it is important to utilize a regimen that is effective, safe, inexpensive, and convenient to use with optimal mimicking of the physiological situation. This systematic review reviews current literature on differences between the three most used testosterone preparations in adult men with hypogonadism and transgender males. Although it appeared hardly any comparative studies have been carried out, there are indications of differences between the preparations, for example, on the stability of testosterone levels, hematocrit, bone mineral density, and patient satisfaction. However, there are no studies on the effects of testosterone replacement on endpoints such as cardiovascular disease in relation to hematocrit or osteoporotic fractures in relation to bone mineral density. The effect of testosterone therapy on health-related quality of life is strongly underexposed in the reviewed studies, while this is a highly relevant outcome measure from a patient perspective. In conclusion, current recommendations on testosterone treatment appear to be based on data primarily from non-randomized clinical studies and observational studies. The availability of reliable comparative data between the different preparations will assist in the process of individual decision-making to choose the most suitable formula.
Search for other papers by Fabienne A U Fox in
Google Scholar
PubMed
University for Health Sciences, Medical Informatics and Technology (UMIT TIROL), Tirol, Austria
Search for other papers by Lennart Koch in
Google Scholar
PubMed
Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
Search for other papers by Monique M B Breteler in
Google Scholar
PubMed
Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
Search for other papers by N Ahmad Aziz in
Google Scholar
PubMed
Objective
Maintaining muscle function throughout life is critical for healthy ageing. Although in vitro studies consistently indicate beneficial effects of 25-hydroxyvitamin D (25-OHD) on muscle function, findings from population-based studies remain inconclusive. We therefore aimed to examine the association between 25-OHD concentration and handgrip strength across a wide age range and assess potential modifying effects of age, sex and season.
Methods
We analysed cross-sectional baseline data of 2576 eligible participants out of the first 3000 participants (recruited from March 2016 to March 2019) of the Rhineland Study, a community-based cohort study in Bonn, Germany. Multivariate linear regression models were used to assess the relation between 25-OHD levels and grip strength while adjusting for age, sex, education, smoking, season, body mass index, physical activity levels, osteoporosis and vitamin D supplementation.
Results
Compared to participants with deficient 25-OHD levels (<30 nmol/L), grip strength was higher in those with inadequate (30 to <50 nmol/L) and adequate (≥50 to ≤125 nmol/L) levels (ß inadequate = 1.222, 95% CI: 0.377; 2.067, P = 0.005; ß adequate = 1.228, 95% CI: 0.437; 2.019, P = 0.002). Modelling on a continuous scale revealed grip strength to increase with higher 25-OHD levels up to ~100 nmol/L, after which the direction reversed (ß linear = 0.505, 95% CI: 0.179; 0.830, P = 0.002; ß quadratic = –0.153, 95% CI: –0.269; -0.038, P = 0.009). Older adults showed weaker effects of 25-OHD levels on grip strength than younger adults (ß 25OHDxAge = –0.309, 95% CI: –0.594; –0.024, P = 0.033).
Conclusions
Our findings highlight the importance of sufficient 25-OHD levels for optimal muscle function across the adult life span. However, vitamin D supplementation should be closely monitored to avoid detrimental effects.
F.I.R.M.O. Italian Foundation for the Research on Bone Diseases, Florence, Italy
Search for other papers by Francesca Marini in
Google Scholar
PubMed
Search for other papers by Francesca Giusti in
Google Scholar
PubMed
Search for other papers by Teresa Iantomasi in
Google Scholar
PubMed
Search for other papers by Federica Cioppi in
Google Scholar
PubMed
Search for other papers by Maria Luisa Brandi in
Google Scholar
PubMed
Multiple endocrine neoplasia type 1 (MEN1) is a rare, inherited cancer syndrome characterized by the development of multiple endocrine and non-endocrine tumors. MEN1 patients show a reduction of bone mass and a higher prevalence of early onset osteoporosis, compared to healthy population of the same age, gender, and ethnicity. During the monitoring and follow-up of MEN1 patients, the attention of clinicians is primarily focused on the diagnosis and therapy of tumors, while the assessment of bone health and mineral metabolism is, in many cases, marginally considered. In this study, we retrospectively analyzed bone and mineral metabolism features in a series of MEN1 patients from the MEN1 Florentine database. Biochemical markers of bone and mineral metabolism and densitometric parameters of bone mass were retrieved from the database and were analyzed based on age ranges and genders of patients and presence/absence of the three main MEN1-related endocrine tumor types. Our evaluation confirmed that patients with a MEN1 diagnosis have a high prevalence of earlyonset osteopenia and osteoporosis, in association with levels of serum and urinary markers of bone turnover higher than the normal reference values, regardless of their different MEN1 tumors. Fifty percent of patients younger than 26 years manifested osteopenia and 8.3% had osteoporosis, in at least one of the measured bone sites. These data suggest the importance of including biochemical and instrumental monitoring of bone metabolism and bone mass in the routine medical evaluation and follow-up of MEN1 patients and MEN1 carriers as important clinical aspects in the management of the syndrome.
Department of Nutrition, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, University of Surrey, Guildford, UK
Search for other papers by Marcela Moraes Mendes in
Google Scholar
PubMed
Search for other papers by Patricia Borges Botelho in
Google Scholar
PubMed
Search for other papers by Helena Ribeiro in
Google Scholar
PubMed
Vitamin D enhances calcium absorption and bone mineralisation, promotes maintenance of muscle function, and is crucial for musculoskeletal health. Low vitamin D status triggers secondary hyperparathyroidism, increases bone loss, and leads to muscle weakness. The primary physiologic function of vitamin D and its metabolites is maintaining calcium homeostasis for metabolic functioning, signal transduction, and neuromuscular activity. A considerable amount of human evidence supports the well-recognised contribution of adequate serum 25-hydroxyvitamin D concentrations for bone homeostasis maintenance and prevention and treatment strategies for osteoporosis when combined with adequate calcium intake. This paper aimed to review the literature published, mainly in the last 20 years, on the effect of vitamin D and its supplementation for musculoskeletal health in order to identify the aspects that remain unclear or controversial and therefore require further investigation and debate. There is a clear need for consistent data to establish realistic and meaningful recommendations of vitamin D status that consider different population groups and locations. Moreover, there is still a lack of consensus on thresholds for vitamin D deficiency and optimal status as well as toxicity, optimal intake of vitamin D, vitamin D supplement alone as a strategy to prevent fractures and falls, recommended sun exposure at different latitudes and for different skin pigmentations, and the extra skeletal effects of vitamin D.
Search for other papers by Barbara J Boucher in
Google Scholar
PubMed
High vitamin D deficiency rates, with rickets and osteomalacia, have been common in South Asians (SAs) arriving in Britain since the 1950s with preventable infant deaths from hypocalcaemic status-epilepticus and cardiomyopathy. Vitamin D deficiency increases common SA disorders (type 2 diabetes and cardiovascular disease), recent trials and non-linear Mendelian randomisation studies having shown deficiency to be causal for both disorders. Ethnic minority, obesity, diabetes and social deprivation are recognised COVID-19 risk factors, but vitamin D deficiency is not, despite convincing mechanistic evidence of it. Adjusting analyses for obesity/ethnicity abolishes vitamin D deficiency in COVID-19 risk prediction, but both factors lower serum 25(OH)D specifically. Social deprivation inadequately explains increased ethnic minority COVID-19 risks. SA vitamin D deficiency remains uncorrected after 70 years, official bodies using ‘education’, ‘assimilation’ and ‘diet’ as ‘proxies’ for ethnic differences and increasing pressures to assimilate. Meanwhile, English rickets was abolished from ~1940 by free ‘welfare foods’ (meat, milk, eggs, cod liver oil), for all pregnant/nursing mothers and young children (<5 years old). Cod liver oil was withdrawn from antenatal clinics in 1994 (for excessive vitamin A teratogenicity), without alternative provision. The take-up of the 2006 ‘Healthy-Start’ scheme of food-vouchers for low-income families with young children (<3 years old) has been poor, being inaccessible and poorly publicised. COVID-19 pandemic advice for UK adults in ‘lockdown’ was ‘400 IU vitamin D/day’, inadequate for correcting the deficiency seen winter/summer at 17.5%/5.9% in White, 38.5%/30% in Black and 57.2%/50.8% in SA people in representative UK Biobank subjects when recruited ~14 years ago and remaining similar in 2018. Vitamin D inadequacy worsens many non-skeletal health risks. Not providing vitamin D for preventing SA rickets and osteomalacia continues to be unacceptable, as deficiency-related health risks increase ethnic health disparities, while abolishing vitamin D deficiency would be easier and more cost-effective than correcting any other factor worsening ethnic minority health in Britain.
Search for other papers by Herjan J T Coelingh Bennink in
Google Scholar
PubMed
Search for other papers by Jan Krijgh in
Google Scholar
PubMed
Search for other papers by Jan F M Egberts in
Google Scholar
PubMed
Search for other papers by Maria Slootweg in
Google Scholar
PubMed
Search for other papers by Harm H E van Melick in
Google Scholar
PubMed
Search for other papers by Erik P M Roos in
Google Scholar
PubMed
Search for other papers by Diederik M Somford in
Google Scholar
PubMed
Search for other papers by Yvette Zimmerman in
Google Scholar
PubMed
Search for other papers by Iman J Schultz in
Google Scholar
PubMed
Search for other papers by Noel W Clarke in
Google Scholar
PubMed
Search for other papers by R Jeroen A van Moorselaar in
Google Scholar
PubMed
Search for other papers by Frans M J Debruyne in
Google Scholar
PubMed
The purpose of androgen deprivation therapy (ADT) in prostate cancer (PCa), using luteinizing hormone-releasing hormone agonists (LHRHa) or gonadotrophin-releasing hormone antagonists, is to suppress the levels of testosterone. Since testosterone is the precursor of estradiol (E2), one of the major undesired effects of ADT is the concomitant loss of E2, causing among others an increased bone turnover and bone loss and an increased risk of osteoporosis and fractures. Therefore, the guidelines for ADT indicate to combine ADT routinely with bone-sparing agents such as bisphosphonates, denosumab or selective estrogen receptor modulators. However, these compounds may have side effects and some require inconvenient parenteral administration. Co-treatment with estrogens is an alternative approach to prevent bone loss and at the same time, to avoid other side effects caused by the loss of estrogens, which is the topic explored in the present narrative review. Estrogens investigated in PCa patients include parenteral or transdermal E2, diethylstilbestrol (DES), and ethinylestradiol (EE) as monotherapy, or high-dose estetrol (HDE4) combined with ADT. Cardiovascular adverse events have been reported with parenteral E2, DES and EE. Encouraging effects on bone parameters have been obtained with transdermal E2 (tE2) and HDE4, in the tE2 development program (PATCH study), and in the LHRHa/HDE4 co-treatment study (PCombi), respectively. Confirmation of the beneficial effects of estrogen therapy with tE2 or HDE4 on bone health in patients with advanced PCa is needed, with special emphasis on bone mass and fracture rate.