Search Results
You are looking at 61 - 70 of 84 items for :
- Abstract: Hypoparathyroidism x
- Abstract: Menopause x
- Abstract: Osteo* x
Search for other papers by Ying Hua in
Google Scholar
PubMed
Search for other papers by Jinqiong Fang in
Google Scholar
PubMed
Search for other papers by Xiaocong Yao in
Google Scholar
PubMed
Department of Clinical Research Center, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
Search for other papers by Zhongxin Zhu in
Google Scholar
PubMed
Background
Obesity and osteoporosis are major public health issues globally. The prevalence of these two diseases prompts the need to better understand the relationship between them. Previous studies, however, have yielded controversial findings on this issue. Therefore, our aim in this study was to evaluate the independent association between waist circumference (WC), as a marker of obesity, and the bone mineral density (BMD) of the lumbar spine among middle-aged adults using data from the National Health and Nutrition Examination Survey (NHANES).
Methods
Our analysis was based on NHANES data from 2011 to 2018, including 5084 adults, 40–59 years of age. A weighted multiple linear regression analysis was used to evaluate the association between WC and lumbar BMD, with smooth curve fitting performed for non-linearities.
Results
After adjusting for BMI and other potential confounders, WC was negatively associated with lumbar BMD in men (β = −2.8, 95% CI: −4.0 to −1.6) and premenopausal women (β = −2.6, 95% CI: −4.1 to −1.1). On subgroup analysis stratified by BMI, this negative association was more significant in men with a BMI ≥30 kg/m2 (β = −4.1, 95% CI: −6.3 to −2.0) and in pre- and postmenopausal women with a BMI <25 kg/m2 (premenopausal women: β= −5.7, 95% CI: −9.4 to−2.0; postmenopausal women: β=−5.6, 95% CI: −9.7 to −1.6). We further identified an inverted U-shaped relationship among premenopausal women, with a point of inflection at WC of 80 cm.
Conclusions
Our study found an inverse relationship between WC and lumbar BMD in middle-aged men with BMI ≥30 kg/m2, and women with BMI <25 kg/m2.
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Xiaoxia Jia in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yaxin An in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yuechao Xu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yuxian Yang in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Chang Liu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Dong Zhao in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Jing Ke in
Google Scholar
PubMed
Background
Obesity is known as a common risk factor for osteoporosis and type 2 diabetes mellitus (T2DM). Perirenal fat, surrounding the kidneys, has been reported to be unique in anatomy and biological functions. This study aimed to explore the relationship between perirenal fat and bone metabolism in patients with T2DM.
Methods
A total of 234 patients with T2DM were recruited from September 2019 to December 2019 in the cross-sectional study. The biochemical parameters and bone turnover markers (BTMs) were determined in all participants. Perirenal fat thickness (PrFT) was performed by ultrasounds via a duplex Doppler apparatus. Associations between PrFT and bone metabolism index were determined via correlation analysis and regression models.
Results
The PrFT was significantly correlated with β-C-terminal telopeptides of type I collagen (β-CTX) (r = −0.14, P < 0.036), parathyroid hormone (iPTH) (r = −0.18, P ≤ 0.006), and 25 hydroxyvitamin D (25-OH-D) (r = −0.14, P = 0.001). Multivariate analysis confirmed that the association of PrFT and β-CTX (β = −0.136, P = 0.042) was independent of other variables.
Conclusion
This study showed a negative and independent association between PrFT and β-CTX in subjects with T2DM, suggesting a possible role of PrFT in bone metabolism. Follow-up studies and further research are necessary to validate the associations and to elucidate the underlying mechanisms.
Endocrine Unit, Royal Victoria Infirmary, Newcastle upon Tyne, UK
Search for other papers by Earn H Gan in
Google Scholar
PubMed
Search for other papers by Wendy Robson in
Google Scholar
PubMed
Search for other papers by Peter Murphy in
Google Scholar
PubMed
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
Search for other papers by Robert Pickard in
Google Scholar
PubMed
Endocrine Unit, Royal Victoria Infirmary, Newcastle upon Tyne, UK
Search for other papers by Simon Pearce in
Google Scholar
PubMed
Search for other papers by Rachel Oldershaw in
Google Scholar
PubMed
Background
The highly plastic nature of adrenal cortex suggests the presence of adrenocortical stem cells (ACSC), but the exact in vivo identity of ACSC remains elusive. A few studies have demonstrated the differentiation of adipose or bone marrow-derived mesenchymal stem cells (MSC) into steroid-producing cells. We therefore investigated the isolation of multipotent MSC from human adrenal cortex.
Methods
Human adrenals were obtained as discarded surgical material. Single-cell suspensions from human adrenal cortex (n = 3) were cultured onto either complete growth medium (CM) or MSC growth promotion medium (MGPM) in hypoxic condition. Following ex vivo expansion, their multilineage differentiation capacity was evaluated. Phenotype markers were analysed by immunocytochemistry and flow cytometry for cell-surface antigens associated with bone marrow MSCs and adrenocortical-specific phenotype. Expression of mRNAs for pluripotency markers was assessed by q-PCR.
Results
The formation of colony-forming unit fibroblasts comprising adherent cells with fibroblast-like morphology were observed from the monolayer cell culture, in both CM and MGPM. Cells derived from MGPM revealed differentiation towards osteogenic and adipogenic cell lineages. These cells expressed cell-surface MSC markers (CD44, CD90, CD105 and CD166) but did not express the haematopoietic, lymphocytic or HLA-DR markers. Flow cytometry demonstrated significantly higher expression of GLI1 in cell population harvested from MGPM, which were highly proliferative. They also exhibited increased expression of the pluripotency markers.
Conclusion
Our study demonstrates that human adrenal cortex harbours a mesenchymal stem cell-like population. Understanding the cell biology of adrenal cortex- derived MSCs will inform regenerative medicine approaches in autoimmune Addison’s disease.
Search for other papers by Kathrin R Frey in
Google Scholar
PubMed
Search for other papers by Tina Kienitz in
Google Scholar
PubMed
Search for other papers by Julia Schulz in
Google Scholar
PubMed
Search for other papers by Manfred Ventz in
Google Scholar
PubMed
Search for other papers by Kathrin Zopf in
Google Scholar
PubMed
Search for other papers by Marcus Quinkler in
Google Scholar
PubMed
Context
Patients with primary adrenal insufficiency (PAI) or congenital adrenal hyperplasia (CAH) receive life-long glucocorticoid (GC) therapy. Daily GC doses are often above the physiological cortisol production rate and can cause long-term morbidities such as osteoporosis. No prospective trial has investigated the long-term effect of different GC therapies on bone mineral density (BMD) in those patients.
Objectives
To determine if patients on hydrocortisone (HC) or prednisolone show changes in BMD after follow-up of 5.5 years. To investigate if BMD is altered after switching from immediate- to modified-release HC.
Design and patients
Prospective, observational, longitudinal study with evaluation of BMD by DXA at visit1, after 2.2 ± 0.4 (visit2) and after 5.5 ± 0.8 years (visit3) included 36 PAI and 8 CAH patients. Thirteen patients received prednisolone (age 52.5 ± 14.8 years; 8 women) and 31 patients received immediate-release HC (age 48.9 ± 15.8 years; 22 women). Twelve patients on immediate-release switched to modified-release HC at visit2.
Results
Prednisolone showed significantly lower Z-scores compared to HC at femoral neck (−0.85 ± 0.80 vs −0.25 ± 1.16, P < 0.05), trochanter (−0.96 ± 0.62 vs 0.51 ± 1.07, P < 0.05) and total hip (−0.78 ± 0.55 vs 0.36 ± 1.04, P < 0.05), but not at lumbar spine, throughout the study. Prednisolone dose decreased by 8% over study time, but no significant effect was seen on BMD. BMD did not change significantly after switching from immediate- to modified-release HC.
Conclusions
The use of prednisolone as hormone replacement therapy results in significantly lower BMD compared to HC. Patients on low-dose HC replacement therapy showed unchanged Z-scores within the normal reference range during the study period.
Search for other papers by Athanasios D Anastasilakis in
Google Scholar
PubMed
Search for other papers by Marina Tsoli in
Google Scholar
PubMed
Search for other papers by Gregory Kaltsas in
Google Scholar
PubMed
Search for other papers by Polyzois Makras in
Google Scholar
PubMed
Langerhans cell histiocytosis (LCH) is a rare disease of not well-defined etiology that involves immune cell activation and frequently affects the skeleton. Bone involvement in LCH usually presents in the form of osteolytic lesions along with low bone mineral density. Various molecules involved in bone metabolism are implicated in the pathogenesis of LCH or may be affected during the course of the disease, including interleukins (ILs), tumor necrosis factor α, receptor activator of NF-κB (RANK) and its soluble ligand RANKL, osteoprotegerin (OPG), periostin and sclerostin. Among them IL-17A, periostin and RANKL have been proposed as potential serum biomarkers for LCH, particularly as the interaction between RANK, RANKL and OPG not only regulates bone homeostasis through its effects on the osteoclasts but also affects the activation and survival of immune cells. Significant changes in circulating and lesional RANKL levels have been observed in LCH patients irrespective of bone involvement. Standard LCH management includes local or systematic administration of corticosteroids and chemotherapy. Given the implication of RANK, RANKL and OPG in the pathogenesis of the disease and the osteolytic nature of bone lesions, agents aiming at inhibiting the RANKL pathway and/or osteoclastic activation, such as bisphosphonates and denosumab, may have a role in the therapeutic approach of LCH although further clinical investigation is warranted.
Search for other papers by Rui-yi Tang in
Google Scholar
PubMed
Search for other papers by Rong Chen in
Google Scholar
PubMed
Search for other papers by Miao Ma in
Google Scholar
PubMed
Search for other papers by Shou-qing Lin in
Google Scholar
PubMed
Search for other papers by Yi-wen Zhang in
Google Scholar
PubMed
Search for other papers by Ya-ping Wang in
Google Scholar
PubMed
Objective
To evaluate the clinical features of Chinese women with idiopathic hypogonadotropic hypogonadism (IHH).
Methods
We retrospectively reviewed the clinical characteristics, laboratory and imaging findings, therapeutic management and fertility outcomes of 138 women with IHH. All patients had been treated and followed up at an academic medical centre during 1990–2016.
Results
Among the 138 patients, 82 patients (59.4%) were diagnosed with normosmic IHH and 56 patients (40.6%) were diagnosed with Kallmann syndrome (KS). The patients with IHH experienced occasional menses (4.3%), spontaneous thelarche (45.7%) or spontaneous pubarche (50.7%). Women with thelarche had a higher percentage of pubarche (P < 0.001) and higher gonadotropin concentrations (P < 0.01). Olfactory bulb/sulci abnormalities were found during the magnetic resonance imaging (MRI) of all patients with KS. Most patients with IHH had osteopenia and low bone age. Among the 16 women who received gonadotropin-releasing hormone treatment, ovulation induction or assisted reproductive technology, the clinical pregnancy rate was 81.3% and the live birth rate was 68.8%.
Conclusions
The present study revealed that the phenotypic spectrum of women with IHH is broader than typical primary amenorrhoea with no secondary sexual development, including occasional menses, spontaneous thelarche or pubarche. MRI of the olfactory system can facilitate the diagnosis of KS. Pregnancy can be achieved after receiving appropriate treatment.
Search for other papers by Natacha Driessens in
Google Scholar
PubMed
Search for other papers by Madhu Prasai in
Google Scholar
PubMed
Search for other papers by Orsalia Alexopoulou in
Google Scholar
PubMed
Search for other papers by Christophe De Block in
Google Scholar
PubMed
Search for other papers by Eva Van Caenegem in
Google Scholar
PubMed
Search for other papers by Guy T’Sjoen in
Google Scholar
PubMed
Search for other papers by Frank Nobels in
Google Scholar
PubMed
Search for other papers by Christophe Ghys in
Google Scholar
PubMed
Search for other papers by Laurent Vroonen in
Google Scholar
PubMed
Search for other papers by Corinne Jonas in
Google Scholar
PubMed
Search for other papers by Bernard Corvilain in
Google Scholar
PubMed
Search for other papers by Dominique Maiter in
Google Scholar
PubMed
Objective
Primary adrenal insufficiency (PAI) is a rare disease with an increasing prevalence, which may be complicated by life-threatening adrenal crisis (AC). Good quality epidemiological data remain scarce. We performed a Belgian survey to describe the aetiology, clinical characteristics, treatment regimens, comorbidities and frequency of AC in PAI.
Methods
A nationwide multicentre study involving 10 major university hospitals in Belgium collected data from adult patients with known PAI.
Results
Two hundred patients were included in this survey. The median age at diagnosis was 38 years (IQR 25–48) with a higher female prevalence (F/M sex ratio = 1.53). The median disease duration was 13 years (IQR 7–25). Autoimmune disease was the most common aetiology (62.5%) followed by bilateral adrenalectomy (23.5%) and genetic variations (8.5%). The majority (96%) of patients were treated with hydrocortisone at a mean daily dose of 24.5 ± 7.0 mg, whereas 87.5% of patients also received fludrocortisone. About one-third of patients experienced one or more AC over the follow-up period, giving an incidence of 3.2 crises per 100 patient-years. There was no association between the incidence of AC and the maintenance dose of hydrocortisone. As high as 27.5% of patients were hypertensive, 17.5% had diabetes and 17.5% had a diagnosis of osteoporosis.
Conclusion
This study provides the first information on the management of PAI in large clinical centres in Belgium, showing an increased frequency of postsurgical PAI, a nearly normal prevalence of several comorbidities and an overall good quality of care with a low incidence of adrenal crises, compared with data from other registries.
Search for other papers by Giuseppe Grande in
Google Scholar
PubMed
Search for other papers by Andrea Graziani in
Google Scholar
PubMed
Search for other papers by Antonella Di Mambro in
Google Scholar
PubMed
Search for other papers by Riccardo Selice in
Google Scholar
PubMed
Department of Medicine, University of Padova, Padova, Italy
Search for other papers by Alberto Ferlin in
Google Scholar
PubMed
Low bone mass is common in men with Klinefelter syndrome (KS), with a prevalence of 6–15% of osteoporosis and of 25–48% of osteopenia. Reduced bone mass has been described since adolescence and it might be related to both reduced bone formation and higher bone resorption. Although reduced testosterone levels are clearly involved in the pathogenesis, this relation is not always evident. Importantly, fracture risk is increased independently from bone mineral density (BMD) and testosterone levels. Here we discuss the pathogenesis of osteoporosis in patients with KS, with a particular focus on the role of testosterone and testis function. In fact, other hormonal mechanisms, such as global Leydig cell dysfunction, causing reduced insulin-like factor 3 and 25-OH vitamin D levels, and high follicle-stimulating hormone and estradiol levels, might be involved. Furthermore, genetic aspects related to the supernumerary X chromosome might be involved, as well as androgen receptor expression and function. Notably, body composition, skeletal mass and strength, and age at diagnosis are other important aspects. Although dual-energy x-ray absorptiometry is recommended in the clinical workflow for patients with KS to measure BMD, recent evidence suggests that alterations in the microarchitecture of the bones and vertebral fractures might be present even in subjects with normal BMD. Therefore, analysis of trabecular bone score, high-resolution peripheral quantitative computed tomography and vertebral morphometry seem promising tools to better estimate the fracture risk of patients with KS. This review also summarizes the evidence on the best available treatments for osteoporosis in men with KS, with or without hypogonadism.
Search for other papers by Yi Chen in
Google Scholar
PubMed
Search for other papers by Wen Zhang in
Google Scholar
PubMed
Search for other papers by Chi Chen in
Google Scholar
PubMed
Search for other papers by Yuying Wang in
Google Scholar
PubMed
Search for other papers by Ningjian Wang in
Google Scholar
PubMed
Search for other papers by Yingli Lu in
Google Scholar
PubMed
Objective
We aimed to evaluate whether thyroid hormones, autoimmune and thyroid homeostasis status were related to bone turnover in type 2 diabetes.
Methods
The data were obtained from a cross-sectional study, the METAL study. In this study, 4209 participants (2059 men and 2150 postmenopausal women) with type 2 diabetes were enrolled. Thyroid function, thyroid antibodies and three bone turnover markers (BTMs), including a large N-mid fragment of osteocalcin (N-MID osteocalcin), β-C-terminal cross-linked telopeptides of type I collagen (β-CTX) and procollagen type I N-terminal propeptide (P1NP), were measured. Thyroid homeostasis parameters, including the sum activity of step-up deiodinases (SPINA-GD), thyroid secretory capacity (SPINA-GT), Jostel’s TSH index (TSHI) and the thyrotroph thyroid hormone resistance index (TTSI), were calculated. The associations of thyroid parameters with BTMs were analyzed using linear regression.
Results
Free and total triiodothyronine were positively associated with N-MID osteocalcin and P1NP in both sexes and positively associated with β-CTX in postmenopausal women. Thyroid-stimulating hormone was negatively associated with β-CTX in postmenopausal women, and free thyroxine was negatively associated with N-MID osteocalcin and P1NP in men. SPINA-GD was positively associated with N-MID osteocalcin and P1NP in both sexes. There was a positive relationship of SPINA-GT with β-CTX, a negative relationship of TTSI with β-CTX, and a negative relationship of TSHI with β-CTX and P1NP in postmenopausal women.
Conclusions
Among men and postmenopausal women with type 2 diabetes, significant associations were observed between N-MID osteocalcin, β-CTX and P1NP with thyroid function and thyroid homeostasis. Further prospective studies are warranted to understand the causal relationship and underlying mechanism.
Search for other papers by Anna Gorbacheva in
Google Scholar
PubMed
Search for other papers by Anna Eremkina in
Google Scholar
PubMed
Search for other papers by Daria Goliusova in
Google Scholar
PubMed
Search for other papers by Julia Krupinova in
Google Scholar
PubMed
Search for other papers by Natalia Mokrysheva in
Google Scholar
PubMed
Multiple endocrine neoplasia type 1 (MEN1) is the most common cause of hereditary primary hyperparathyroidism (PHPT). Bone disorders are considered one of the key symptoms in PHPT present with the significant reduction in bone mineral density and low-energy fractures. Previously, these bone disorders were believed to be caused solely by the increase in the level of parathyroid hormone and its subsequent effect on bone resorption. The current paradigm, however, states that the mutations in the menin gene, which cause the development of MEN1, can also affect the metabolism of the cells of the osteoid lineage. This review analyzes both the proven and the potential intracellular mechanisms through which menin can affect bone metabolism.