Search Results
Search for other papers by Enrique Pedernera in
Google Scholar
PubMed
Search for other papers by Flavia Morales-Vásquez in
Google Scholar
PubMed
Search for other papers by María J Gómora in
Google Scholar
PubMed
Search for other papers by Miguel A Almaraz in
Google Scholar
PubMed
Universidad La Salle, Posgrado de la Facultad de Ciencias Químicas, Ciudad de México, México
Search for other papers by Esteban Mena in
Google Scholar
PubMed
Search for other papers by Delia Pérez-Montiel in
Google Scholar
PubMed
Search for other papers by Elizabeth Rendon in
Google Scholar
PubMed
Search for other papers by Horacio López-Basave in
Google Scholar
PubMed
Search for other papers by Juan Maldonado-Cubas in
Google Scholar
PubMed
Search for other papers by Carmen Méndez in
Google Scholar
PubMed
The incidence of ovarian cancer has been epidemiologically related to female reproductive events and hormone replacement therapy after menopause. This highlights the importance of evaluating the role of sexual steroid hormones in ovarian cancer by the expression of enzymes related to steroid hormone biosynthesis in the tumor cells. This study was aimed to evaluate the presence of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), aromatase and estrogen receptor alpha (ERα) in the tumor cells and their association with the overall survival in 111 patients diagnosed with primary ovarian tumors. Positive immunoreactivity for 17β-HSD1 was observed in 74% of the tumors. In the same samples, aromatase and ERα revealed 66% and 47% positivity, respectively. No association was observed of 17β-HSD1 expression with the histological subtypes and clinical stages of the tumor. The overall survival of patients was improved in 17β-HSD1-positive group in Kaplan–Meier analysis (P = 0.028), and 17β-HSD1 expression had a protective effect from multivariate proportional regression evaluation (HR = 0.44; 95% CI 0.24–0.9; P = 0.040). The improved survival was observed in serous epithelial tumors but not in nonserous ovarian tumors. The expression of 17β-HSD1 in the cells of the serous epithelial ovarian tumors was associated with an improved overall survival, whereas aromatase and ERα were not related to a better survival. The evaluation of hazard risk factors demonstrated that age and clinical stage showed worse prognosis, and 17β-HSD1 expression displayed a protective effect with a better survival outcome in patients of epithelial ovarian tumors.
Search for other papers by Anna Gorbacheva in
Google Scholar
PubMed
Search for other papers by Anna Eremkina in
Google Scholar
PubMed
Search for other papers by Daria Goliusova in
Google Scholar
PubMed
Search for other papers by Julia Krupinova in
Google Scholar
PubMed
Search for other papers by Natalia Mokrysheva in
Google Scholar
PubMed
Multiple endocrine neoplasia type 1 (MEN1) is the most common cause of hereditary primary hyperparathyroidism (PHPT). Bone disorders are considered one of the key symptoms in PHPT present with the significant reduction in bone mineral density and low-energy fractures. Previously, these bone disorders were believed to be caused solely by the increase in the level of parathyroid hormone and its subsequent effect on bone resorption. The current paradigm, however, states that the mutations in the menin gene, which cause the development of MEN1, can also affect the metabolism of the cells of the osteoid lineage. This review analyzes both the proven and the potential intracellular mechanisms through which menin can affect bone metabolism.
Search for other papers by Hélène Singeisen in
Google Scholar
PubMed
Search for other papers by Mariko Melanie Renzulli in
Google Scholar
PubMed
Search for other papers by Vojtech Pavlicek in
Google Scholar
PubMed
Search for other papers by Pascal Probst in
Google Scholar
PubMed
Search for other papers by Fabian Hauswirth in
Google Scholar
PubMed
Search for other papers by Markus K Muller in
Google Scholar
PubMed
Search for other papers by Magdalene Adamczyk in
Google Scholar
PubMed
Search for other papers by Achim Weber in
Google Scholar
PubMed
Search for other papers by Reto Martin Kaderli in
Google Scholar
PubMed
Search for other papers by Pietro Renzulli in
Google Scholar
PubMed
Objective
Multiple endocrine neoplasia type 4 (MEN4) is caused by a CDKN1B germline mutation first described in 2006. Its estimated prevalence is less than one per million. The aim of this study was to define the disease characteristics.
Methods
A systematic review was performed according to the PRISMA 2020 criteria. A literature search from January 2006 to August 2022 was done using MEDLINE® and Web of ScienceTM.
Results
Forty-eight symptomatic patients fulfilled the pre-defined eligibility criteria. Twenty-eight different CDKN1B variants, mostly missense (21/48, 44%) and frameshift mutations (17/48, 35%), were reported. The majority of patients were women (36/48, 75%). Men became symptomatic at a median age of 32.5 years (range 10–68, mean 33.7 ± 23), whereas the same event was recorded for women at a median age of 49.5 years (range 5–76, mean 44.8 ± 19.9) (P = 0.25). The most frequently affected endocrine organ was the parathyroid gland (36/48, 75%; uniglandular disease 31/36, 86%), followed by the pituitary gland (21/48, 44%; hormone-secreting 16/21, 76%), the endocrine pancreas (7/48, 15%), and the thyroid gland (4/48, 8%). Tumors of the adrenal glands and thymus were found in three and two patients, respectively. The presenting first endocrine pathology concerned the parathyroid (27/48, 56%) and the pituitary gland (11/48, 23%). There were one (27/48, 56%), two (13/48, 27%), three (3/48, 6%), or four (5/48, 10%) syn- or metachronously affected endocrine organs in a single patient, respectively.
Conclusion
MEN4 is an extremely rare disease, which most frequently affects women around 50 years of age. Primary hyperparathyroidism as a uniglandular disease is the leading pathology.