Search Results
You are looking at 1 - 10 of 110 items for
- Abstract: Calcium x
- Abstract: Osteo* x
- Abstract: Skeleton x
Search for other papers by Athanasios D Anastasilakis in
Google Scholar
PubMed
Search for other papers by Marina Tsoli in
Google Scholar
PubMed
Search for other papers by Gregory Kaltsas in
Google Scholar
PubMed
Search for other papers by Polyzois Makras in
Google Scholar
PubMed
Langerhans cell histiocytosis (LCH) is a rare disease of not well-defined etiology that involves immune cell activation and frequently affects the skeleton. Bone involvement in LCH usually presents in the form of osteolytic lesions along with low bone mineral density. Various molecules involved in bone metabolism are implicated in the pathogenesis of LCH or may be affected during the course of the disease, including interleukins (ILs), tumor necrosis factor α, receptor activator of NF-κB (RANK) and its soluble ligand RANKL, osteoprotegerin (OPG), periostin and sclerostin. Among them IL-17A, periostin and RANKL have been proposed as potential serum biomarkers for LCH, particularly as the interaction between RANK, RANKL and OPG not only regulates bone homeostasis through its effects on the osteoclasts but also affects the activation and survival of immune cells. Significant changes in circulating and lesional RANKL levels have been observed in LCH patients irrespective of bone involvement. Standard LCH management includes local or systematic administration of corticosteroids and chemotherapy. Given the implication of RANK, RANKL and OPG in the pathogenesis of the disease and the osteolytic nature of bone lesions, agents aiming at inhibiting the RANKL pathway and/or osteoclastic activation, such as bisphosphonates and denosumab, may have a role in the therapeutic approach of LCH although further clinical investigation is warranted.
Department of Nutrition, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, University of Surrey, Guildford, UK
Search for other papers by Marcela Moraes Mendes in
Google Scholar
PubMed
Search for other papers by Patricia Borges Botelho in
Google Scholar
PubMed
Search for other papers by Helena Ribeiro in
Google Scholar
PubMed
Vitamin D enhances calcium absorption and bone mineralisation, promotes maintenance of muscle function, and is crucial for musculoskeletal health. Low vitamin D status triggers secondary hyperparathyroidism, increases bone loss, and leads to muscle weakness. The primary physiologic function of vitamin D and its metabolites is maintaining calcium homeostasis for metabolic functioning, signal transduction, and neuromuscular activity. A considerable amount of human evidence supports the well-recognised contribution of adequate serum 25-hydroxyvitamin D concentrations for bone homeostasis maintenance and prevention and treatment strategies for osteoporosis when combined with adequate calcium intake. This paper aimed to review the literature published, mainly in the last 20 years, on the effect of vitamin D and its supplementation for musculoskeletal health in order to identify the aspects that remain unclear or controversial and therefore require further investigation and debate. There is a clear need for consistent data to establish realistic and meaningful recommendations of vitamin D status that consider different population groups and locations. Moreover, there is still a lack of consensus on thresholds for vitamin D deficiency and optimal status as well as toxicity, optimal intake of vitamin D, vitamin D supplement alone as a strategy to prevent fractures and falls, recommended sun exposure at different latitudes and for different skin pigmentations, and the extra skeletal effects of vitamin D.
Search for other papers by Gabriella Oliveira Lima in
Google Scholar
PubMed
Search for other papers by Alex Luiz Menezes da Silva in
Google Scholar
PubMed
Search for other papers by Julianne Elba Cunha Azevedo in
Google Scholar
PubMed
Search for other papers by Chirlene Pinheiro Nascimento in
Google Scholar
PubMed
Search for other papers by Luana Rodrigues Vieira in
Google Scholar
PubMed
Search for other papers by Akira Otake Hamoy in
Google Scholar
PubMed
Search for other papers by Luan Oliveira Ferreira in
Google Scholar
PubMed
Search for other papers by Verônica Regina Lobato Oliveira Bahia in
Google Scholar
PubMed
Search for other papers by Nilton Akio Muto in
Google Scholar
PubMed
Search for other papers by Dielly Catrina Favacho Lopes in
Google Scholar
PubMed
Search for other papers by Moisés Hamoy in
Google Scholar
PubMed
Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.
Search for other papers by A Chinoy in
Google Scholar
PubMed
Search for other papers by M Skae in
Google Scholar
PubMed
Search for other papers by A Babiker in
Google Scholar
PubMed
Search for other papers by D Kendall in
Google Scholar
PubMed
Search for other papers by M Z Mughal in
Google Scholar
PubMed
Search for other papers by R Padidela in
Google Scholar
PubMed
Background
Hypoparathyroidism is characterised by hypocalcaemia, and standard management is with an active vitamin D analogue and adequate oral calcium intake (dietary and/or supplements). Little is described in the literature about the impact of intercurrent illnesses on calcium homeostasis in children with hypoparathyroidism.
Methods
We describe three children with hypoparathyroidism in whom intercurrent illnesses led to hypocalcaemia and escalation of treatment with alfacalcidol (1-hydroxycholecalciferol) and calcium supplements.
Results
Three infants managed with standard treatment for hypoparathyroidism (two with homozygous mutations in GCMB2 gene and one with Sanjad-Sakati syndrome) developed symptomatic hypocalcaemia (two infants developed seizures) following respiratory or gastrointestinal illnesses. Substantial increases in alfacalcidol doses (up to three times their pre-illness doses) and calcium supplementation were required to achieve acceptable serum calcium concentrations. However, following resolution of illness, these children developed an increase in serum calcium and hypercalciuria, necessitating rapid reduction to pre-illness dosages of alfacalcidol and oral calcium supplementation.
Conclusion
Intercurrent illness may precipitate symptomatic hypocalcaemia in children with hypoparathyroidism, necessitating increase in dosages of alfacalcidol and calcium supplements. Close monitoring is required on resolution of the intercurrent illness, with timely reduction of dosages of active analogues of vitamin D and calcium supplements to prevent hypercalcaemia, hypercalciuria and nephrocalcinosis.
Search for other papers by E M Winter in
Google Scholar
PubMed
Search for other papers by A Ireland in
Google Scholar
PubMed
Search for other papers by N C Butterfield in
Google Scholar
PubMed
Search for other papers by M Haffner-Luntzer in
Google Scholar
PubMed
Search for other papers by M-N Horcajada in
Google Scholar
PubMed
Jan van Goyen Medical Center, Department of Internal Medicine, Amsterdam, the Netherlands
Search for other papers by A G Veldhuis-Vlug in
Google Scholar
PubMed
Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
Search for other papers by L Oei in
Google Scholar
PubMed
Search for other papers by G Colaianni in
Google Scholar
PubMed
Search for other papers by N Bonnet in
Google Scholar
PubMed
In this review we discuss skeletal adaptations to the demanding situation of pregnancy and lactation. Calcium demands are increased during pregnancy and lactation, and this is effectuated by a complex series of hormonal changes. The changes in bone structure at the tissue and whole bone level observed during pregnancy and lactation appear to largely recover over time. The magnitude of the changes observed during lactation may relate to the volume and duration of breastfeeding and return to regular menses. Studies examining long-term consequences of pregnancy and lactation suggest that there are small, site-specific benefits to bone density and that bone geometry may also be affected. Pregnancy- and lactation-induced osteoporosis (PLO) is a rare disease for which the pathophysiological mechanism is as yet incompletely known; here, we discuss and speculate on the possible roles of genetics, oxytocin, sympathetic tone and bone marrow fat. Finally, we discuss fracture healing during pregnancy and lactation and the effects of estrogen on this process.
Search for other papers by Huda M Elsharkasi in
Google Scholar
PubMed
Search for other papers by Suet C Chen in
Google Scholar
PubMed
Search for other papers by Lewis Steell in
Google Scholar
PubMed
Paediatric Neurosciences Research Group, Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
Search for other papers by Shuko Joseph in
Google Scholar
PubMed
Search for other papers by Naiemh Abdalrahaman in
Google Scholar
PubMed
Search for other papers by Christie McComb in
Google Scholar
PubMed
Search for other papers by Blair Johnston in
Google Scholar
PubMed
Search for other papers by John Foster in
Google Scholar
PubMed
Search for other papers by Sze Choong Wong in
Google Scholar
PubMed
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Objective
The aim of this study is to investigate the role of 3T-MRI in assessing musculoskeletal health in children and young people.
Design
Bone, muscle and bone marrow imaging was performed in 161 healthy participants with a median age of 15.0 years (range, 8.0, 30.0).
Methods
Detailed assessment of bone microarchitecture (constructive interference in the steady state (CISS) sequence, voxel size 0.2 × 0.2 × 0.4 mm3), bone geometry (T1-weighted turbo spin echo (TSE) sequence, voxel size 0.4 × 0.4 × 2 mm3) and bone marrow (1H-MRS, point resolved spectroscopy sequence (PRESS) (single voxel size 20 × 20 × 20 mm3) size and muscle adiposity (Dixon, voxel size 1.1 × 1.1 × 2 mm3).
Results
There was an inverse association of apparent bone volume/total volume (appBV/TV) with age (r = −0.5, P < 0.0005). Cortical area, endosteal and periosteal circumferences and muscle cross-sectional area showed a positive association to age (r > 0.49, P < 0.0001). In those over 17 years of age, these parameters were also higher in males than females (P < 0.05). This sex difference was also evident for appBV/TV and bone marrow adiposity (BMA) in the older participants (P < 0.05). AppBV/TV showed a negative correlation with BMA (r = −0.22, P = 0.01) which also showed an association with muscle adiposity (r = 0.24, P = 0.04). Cortical geometric parameters were highly correlated with muscle area (r > 0.57, P < 0.01).
Conclusions
In addition to providing deep insight into the normal relationships between bone, fat and muscle in young people, these novel data emphasize the role of MRI as a non-invasive method for performing a comprehensive and integrated assessment of musculoskeletal health in the growing skeleton.
Search for other papers by W N H Koek in
Google Scholar
PubMed
Search for other papers by N Campos-Obando in
Google Scholar
PubMed
Search for other papers by B C J van der Eerden in
Google Scholar
PubMed
Search for other papers by Y B de Rijke in
Google Scholar
PubMed
Search for other papers by M A Ikram in
Google Scholar
PubMed
Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
Search for other papers by A G Uitterlinden in
Google Scholar
PubMed
Search for other papers by J P T M van Leeuwen in
Google Scholar
PubMed
Search for other papers by M C Zillikens in
Google Scholar
PubMed
Background
Sex differences in calcium and phosphate have been observed. We aimed to assess a relation with age.
Methods
We used the laboratory values of serum calcium, phosphate and albumin from three different samples ( 2005, 2010 and 2014 years) using the hospital information system of Erasmus MC, Rotterdam. The samples were divided into three age groups: 1–17, 18–44 and ≥45 years. Sex differences in calcium and phosphate were analyzed using ANCOVA, adjusting for age and serum albumin. Furthermore, sex by age interactions were determined and we analyzed differences between age groups stratified by sex.
Results
In all three samples there was a significant sex × age interaction for serum calcium and phosphate, whose levels were significantly higher in women compared to men above 45 years. No sex differences in the younger age groups were found. In men, serum calcium and phosphate levels were highest in the youngest age group compared to age groups of 18–44 and ≥45 years. In women, serum calcium levels were significantly higher in the age group 1–17 and the age group ≥45 years compared to the 18–44 years age group. In women, serum phosphate was different between the three different age groups with highest level in the group 1–17 years and lowest in the group 18–44 years.
Conclusion
There are age- dependent sex differences in serum calcium and phosphate. Furthermore, we found differences in serum calcium and phosphate between different age groups. Underlying mechanisms for these age- and sex- differences are not yet fully elucidated.
Search for other papers by Mieke Van Hemelrijck in
Google Scholar
PubMed
Search for other papers by Thurkaa Shanmugalingam in
Google Scholar
PubMed
Search for other papers by Cecilia Bosco in
Google Scholar
PubMed
Search for other papers by Wahyu Wulaningsih in
Google Scholar
PubMed
Search for other papers by Sabine Rohrmann in
Google Scholar
PubMed
Background
Despite mounting evidence linking both calcium and IGF1, there is a lack of studies investigating any association between circulating levels of IGF1 and serum calcium.
Methods
Serum calcium, IGF1, and IGF-binding protein 3 (IGFBP3) were measured for 5368 participants in NHANES III. We calculated multivariable-adjusted geometric means of serum concentrations of IGF1, IGFBP3, and IGF1/IGFBP3 by categories of calcium (lowest 5% (<1.16 mmol/l), mid 90%, and top 5% (≥1.31 mmol/l)). We also performed stratified analyses by sex, age, ethnicity, BMI, serum levels of vitamin D, and bone mineral density (BMD).
Results
Overall, we found that circulating calcium was positively associated with circulating levels of IGF1 and IGFBP3, but not their molar ratio (i.e., geometric mean of IGF1 by increasing calcium categories: 237.63, 246.51, and 264.22 ng/nl; P trend: 0.43; P first vs third category: 0.01). In particular, these associations were observed in women, people aged <60, non-Hispanic whites, those with vitamin D levels above the mean, and those with low BMD. In contrast, there was an inverse association with the molar ratio for those with BMI ≥30 kg/m2.
Conclusion
We found an overall positive association between circulating levels of IGF1 and IGFBP3 and serum calcium. However, stratification by potential effect-modifiers did not support all suggested hypotheses. Our findings provide more insight into the interplay between calcium and IGF1, which in the future can be investigated in larger observational studies allowing for additional stratifications based on a combination of the different effect-modifiers investigated here.
Search for other papers by Mateo Amaya-Montoya in
Google Scholar
PubMed
Search for other papers by Daniela Duarte-Montero in
Google Scholar
PubMed
Search for other papers by Luz D Nieves-Barreto in
Google Scholar
PubMed
Search for other papers by Angélica Montaño-Rodríguez in
Google Scholar
PubMed
Search for other papers by Eddy C Betancourt-Villamizar in
Google Scholar
PubMed
Search for other papers by María P Salazar-Ocampo in
Google Scholar
PubMed
Fundación Santa Fe de Bogotá, Section of Endocrinology, Bogotá, Colombia
Search for other papers by Carlos O Mendivil in
Google Scholar
PubMed
Data on dietary calcium and vitamin D intake from Latin America are scarce. We explored the main correlates and dietary sources of calcium and vitamin D in a probabilistic, population-based sample from Colombia. We studied 1554 participants aged 18–75 from five different geographical regions. Dietary intake was assessed by employing a 157-item semi-quantitative food frequency questionnaire and national and international food composition tables. Daily vitamin D intake decreased with increasing age, from 230 IU/day in the 18–39 age group to 184 IU/day in the 60–75 age group (P -trend < 0.001). Vitamin D intake was positively associated with socioeconomic status (SES) (196 IU/day in lowest vs 234 in highest SES, P-trend < 0.001), and with educational level (176 IU/day in lowest vs 226 in highest education level, P-trend < 0.001). Daily calcium intake also decreased with age, from 1376 mg/day in the 18–39 age group to 1120 mg/day in the 60–75 age group (P -trend < 0.001). Calcium intake was lowest among participants with only elementary education, but the absolute difference in calcium intake between extreme education categories was smaller than for vitamin D (1107 vs 1274 mg/day, P-trend = 0.023). Daily calcium intake did not correlate with SES (P -trend = 0.74). Eggs were the main source of overall vitamin D, albeit their contribution decreased with increasing age. Dairy products contributed at least 48% of dietary calcium in all subgroups, mostly from cheese-containing traditional foods. SES and education were the key correlates of vitamin D and calcium intake. These findings may contribute to shape public health interventions in Latin American countries.
Search for other papers by Daniel Bell in
Google Scholar
PubMed
Search for other papers by Julia Hale in
Google Scholar
PubMed
Search for other papers by Cara Go in
Google Scholar
PubMed
Search for other papers by Ben G Challis in
Google Scholar
PubMed
Search for other papers by Tilak Das in
Google Scholar
PubMed
Search for other papers by Brian Fish in
Google Scholar
PubMed
Department of Medical Genetics, Cambridge University, Cambridge, UK
Search for other papers by Ruth T Casey in
Google Scholar
PubMed
Primary hyperparathyroidism (pHPT) is a common endocrine disorder that can be cured by parathyroidectomy; patients unsuitable for surgery can be treated with cinacalcet. Availability of surgery may be reduced during COVID-19, and cinacalcet can be used as bridging therapy. In this single-centre retrospective analysis, we investigated the utility and safety of cinacalcet in patients with pHPT receiving cinacalcet between March 2019 and July 2020, including pre-parathyroidectomy bridging. We reviewed and summarised the published literature. Cinacalcet dosages were adjusted by endocrinologists to achieve target calcium < 2.70 mmol/L. Eighty-six patients were identified, with the most achieving target calcium (79.1%) with a mean dose of 39.4 mg/day (±17.1 mg/day) for a median duration of 35 weeks (1–178 weeks). Calcium was normalised in a median time of 5 weeks. The majority of patients commenced cinacalcet of 30 mg/day (78 patients) with the remainder at 60 mg/day (8 patients). Forty-seven patients commencing lower dose cinacalcet (30 mg/day) achieved target calcium without requiring 60 mg/day. Baseline PTH was significantly higher in patients requiring higher doses of cinacalcet. 18.6% of patients reported adverse reactions and 4.7% discontinued cinacalcet. Patients treated with cinacalcet pre-parathyroidectomy required a higher dose and fewer achieved target calcium compared to medical treatment with cinacalcet alone. Post-operative calcium was similar to patients who were not given pre-parathyroidectomy cinacalcet. In summary, cinacalcet at an initial dose of 30 mg/day is safe and useful for achieving target calcium in patients with symptomatic or severe hypercalcaemia in pHPT, including those treated for pre-parathyroidectomy. We propose a PTH threshold of >30 pmol/L to initiate at a higher dose of 60 mg/day.