Search Results
Search for other papers by Alessandro Brancatella in
Google Scholar
PubMed
Search for other papers by Claudio Marcocci in
Google Scholar
PubMed
Thyroid hormones stimulate bone turnover in adults by increasing osteoclastic bone resorption. TSH suppressive therapy is usually applied in patients with differentiated thyroid cancer (DTC) to improve the disease outcome. Over the last decades several authors have closely monitored the potential harm suffered by the skeletal system. Several studies and meta-analyses have shown that chronic TSH suppressive therapy is safe in premenopausal women and men. Conversely, in postmenopausal women TSH suppressive therapy is associated with a decrease of bone mineral density, deterioration of bone architecture (quantitative CT, QCT; trabecular bone score, TBS), and, possibly, an increased risk of fractures. The TSH receptor is expressed in bone cells and the results of experimental studies in TSH receptor knockout mice and humans on whether low TSH levels, as opposed to solely high thyroid hormone levels, might contribute to bone loss in endogenous or exogenous thyrotoxicosis remain controversial. Recent guidelines on the use of TSH suppressive therapy in patients with DTC give value not only to its benefit on the outcome of the disease, but also to the risks associated with exogenous thyrotoxicosis, namely menopause, osteopenia or osteoporosis, age >60 years, and history of atrial fibrillation. Bone health (BMD and/or preferably TBS) should be evaluated in postmenopausal women under chronic TSH suppressive therapy or in those patients planning to be treated for several years. Antiresorptive therapy could also be considered in selected cases (increased risk of fracture or significant decline of BMD/TBS during therapy) to prevent bone loss.
Search for other papers by Lijuan Fu in
Google Scholar
PubMed
Search for other papers by Jinhuan Ma in
Google Scholar
PubMed
Search for other papers by Sumei Yan in
Google Scholar
PubMed
Search for other papers by Qijun Si in
Google Scholar
PubMed
Background:
Whether polymorphisms in VDR gene affect the risk of postmenopausal osteoporosis or not remain unclear. Thus, the authors performed a meta-analysis to more robustly assess associations between polymorphisms in VDR gene and the risk of postmenopausal osteoporosis by integrating the results of previous literature.
Methods:
Medline, Embase, Wanfang, VIP and CNKI were searched comprehensively for eligible literature, and 67 genetic association studies were finally selected to be included in this meta-analysis.
Results:
We found that ApaI rs7975232 (dominant comparison: OR = 0.77, P = 0.007; allele comparison: OR = 0.81, P = 0.04), BsmI rs1544410 (dominant comparison: OR = 0.69, P = 0.002; allele comparison: OR = 0.78, P = 0.008) and TaqI rs731236 (recessive comparison: OR = 1.32 , P = 0.01) polymorphisms were significantly associated with the risk of postmenopausal osteoporosis in Caucasians, whereas FokI rs10735810 polymorphism was significantly associated with the risk of postmenopausal osteoporosis in Asians (dominant comparison: OR = 0.61, P = 0.0001; recessive comparison: OR = 2.02, P = 0.001; allele comparison: OR = 0.68, P = 0.002).
Conclusions:
This meta-analysis shows that ApaI rs7975232, BsmI rs1544410 and TaqI rs731236 polymorphisms may affect the risk of postmenopausal osteoporosis in Caucasians, while BsmI rs1544410 polymorphism may affect the risk of postmenopausal osteoporosis in Asians.
Search for other papers by Raja Padidela in
Google Scholar
PubMed
Search for other papers by Moira S Cheung in
Google Scholar
PubMed
Search for other papers by Vrinda Saraff in
Google Scholar
PubMed
Search for other papers by Poonam Dharmaraj in
Google Scholar
PubMed
X-linked hypophosphataemia (XLH) is caused by a pathogenic variant in the PHEX gene, which leads to elevated circulating FGF23. High FGF23 causes hypophosphataemia, reduced active vitamin D concentration and clinically manifests as rickets in children and osteomalacia in children and adults. Conventional therapy for XLH includes oral phosphate and active vitamin D analogues but does not specifically treat the underlying pathophysiology of elevated FGF23-induced hypophosphataemia. In addition, adherence to conventional therapy is limited by frequent daily dosing and side effects such as gastrointestinal symptoms, secondary hyperparathyroidism and nephrocalcinosis. Burosumab, a recombinant human IgG1 MAB that binds to and inhibits the activity of FGF23, is administered subcutaneously every 2 weeks. In clinical trials (phase 2 and 3) burosumab was shown to improve phosphate homeostasis that consequently resolves the skeletal/non-skeletal manifestations of XLH. Burosumab was licensed in Europe (February 2018) with the National Institute for Health and Care Excellence, UK approving use within its marketing authorisation in October 2018. In this publication, the British Paediatric and Adolescent Bone Group (BPABG) reviewed current evidence and provide expert recommendations for care pathway and management of XLH with burosumab.
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
Search for other papers by Sylvia Thiele in
Google Scholar
PubMed
Search for other papers by Anke Hannemann in
Google Scholar
PubMed
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
Search for other papers by Maria Winzer in
Google Scholar
PubMed
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
Search for other papers by Ulrike Baschant in
Google Scholar
PubMed
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
Search for other papers by Heike Weidner in
Google Scholar
PubMed
Search for other papers by Matthias Nauck in
Google Scholar
PubMed
Search for other papers by Rajesh V Thakker in
Google Scholar
PubMed
DFG Research Center and Cluster of Excellence for Regenerative Therapies, Technical University, Dresden, Germany
Search for other papers by Martin Bornhäuser in
Google Scholar
PubMed
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
DFG Research Center and Cluster of Excellence for Regenerative Therapies, Technical University, Dresden, Germany
Search for other papers by Lorenz C Hofbauer in
Google Scholar
PubMed
Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
Search for other papers by Martina Rauner in
Google Scholar
PubMed
Glucocorticoids (GC) are used for the treatment of inflammatory diseases, including various forms of arthritis. However, their use is limited, amongst others, by adverse effects on bone. The Wnt and bone formation inhibitor sclerostin was recently implicated in the pathogenesis of GC-induced osteoporosis. However, data are ambiguous. The aim of this study was to assess the regulation of sclerostin by GC using several mouse models with high GC levels and two independent cohorts of patients treated with GC. Male 24-week-old C57BL/6 and 18-week-old DBA/1 mice exposed to GC and 12-week-old mice with endogenous hypercortisolism displayed reduced bone formation as indicated by reduced levels of P1NP and increased serum sclerostin levels. The expression of sclerostin in femoral bone tissue and GC-treated bone marrow stromal cells, however, was not consistently altered. In contrast, GC dose- and time-dependently suppressed sclerostin at mRNA and protein levels in human mesenchymal stromal cells, and this effect was GC receptor dependent. In line with the human cell culture data, patients with rheumatoid arthritis (RA, n = 101) and polymyalgia rheumatica (PMR, n = 21) who were exposed to GC had lower serum levels of sclerostin than healthy age- and sex-matched controls (−40%, P < 0.01 and −26.5%, P < 0.001, respectively). In summary, sclerostin appears to be differentially regulated by GC in mice and humans as it is suppressed by GCs in humans but is not consistently altered in mice. Further studies are required to delineate the differences between GC regulation of sclerostin in mice and humans and assess whether sclerostin mediates GC-induced osteoporosis in humans.
Search for other papers by Rimesh Pal in
Google Scholar
PubMed
Search for other papers by Sanjay Kumar Bhadada in
Google Scholar
PubMed
Search for other papers by Awesh Singhare in
Google Scholar
PubMed
Search for other papers by Anil Bhansali in
Google Scholar
PubMed
Search for other papers by Sadishkumar Kamalanathan in
Google Scholar
PubMed
Search for other papers by Manoj Chadha in
Google Scholar
PubMed
Search for other papers by Phulrenu Chauhan in
Google Scholar
PubMed
Search for other papers by Ashwani Sood in
Google Scholar
PubMed
Search for other papers by Vandana Dhiman in
Google Scholar
PubMed
Search for other papers by Dinesh Chandra Sharma in
Google Scholar
PubMed
Search for other papers by Uma Nahar Saikia in
Google Scholar
PubMed
Search for other papers by Debajyoti Chatterjee in
Google Scholar
PubMed
Search for other papers by Vikas Agashe in
Google Scholar
PubMed
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome characterized by recalcitrant hypophosphatemia. Reports from the Indian subcontinent are scarce, with most being single center experiences involving few patients. Herein, we conducted a retrospective analysis of 30 patients of TIO diagnosed at three tertiary care hospitals in India. Patients with persistent hypophosphatemia (despite correction of hypovitaminosis D), normocalcemia, elevated alkaline phosphatase, low TmP/GFR and elevated or ‘inappropriately normal’ FGF23 levels were labeled as having TIO. They were sequentially subjected to functional followed by anatomical imaging. Patients with a well-localized tumor underwent excision; others were put on phosphorous and calcitriol supplementation. The mean age at presentation was 39.6 years with female:male ratio of 3:2. Bone pain (83.3%) and proximal myopathy (70%) were the chief complaints; 40% of cases had fractures. The mean delay in diagnosis was 3.8 years. Tumors were clinically detectable in four patients (13.3%). The mean serum phosphate was 0.50 mmol/L with a median serum FGF23 level of 518 RU/mL. Somatostatin receptor-based scintigraphy was found to be superior to FDG-PET in tumor localization. Lower extremities were the most common site of the tumor (72%). Tumor size was positively correlated with serum FGF23 levels. Twenty-two patients underwent tumor resection and 16 of them had phosphaturic mesenchymal tumors. Surgical excision led to cure in 72.7% of patients whereas disease persistence and disease recurrence were seen in 18.2% and 9.1% of cases, respectively. At the last follow-up, serum phosphate in the surgically treated group was significantly higher than in the medically managed group.
Search for other papers by Ying Hua in
Google Scholar
PubMed
Search for other papers by Jinqiong Fang in
Google Scholar
PubMed
Search for other papers by Xiaocong Yao in
Google Scholar
PubMed
Department of Clinical Research Center, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
Search for other papers by Zhongxin Zhu in
Google Scholar
PubMed
Background
Obesity and osteoporosis are major public health issues globally. The prevalence of these two diseases prompts the need to better understand the relationship between them. Previous studies, however, have yielded controversial findings on this issue. Therefore, our aim in this study was to evaluate the independent association between waist circumference (WC), as a marker of obesity, and the bone mineral density (BMD) of the lumbar spine among middle-aged adults using data from the National Health and Nutrition Examination Survey (NHANES).
Methods
Our analysis was based on NHANES data from 2011 to 2018, including 5084 adults, 40–59 years of age. A weighted multiple linear regression analysis was used to evaluate the association between WC and lumbar BMD, with smooth curve fitting performed for non-linearities.
Results
After adjusting for BMI and other potential confounders, WC was negatively associated with lumbar BMD in men (β = −2.8, 95% CI: −4.0 to −1.6) and premenopausal women (β = −2.6, 95% CI: −4.1 to −1.1). On subgroup analysis stratified by BMI, this negative association was more significant in men with a BMI ≥30 kg/m2 (β = −4.1, 95% CI: −6.3 to −2.0) and in pre- and postmenopausal women with a BMI <25 kg/m2 (premenopausal women: β= −5.7, 95% CI: −9.4 to−2.0; postmenopausal women: β=−5.6, 95% CI: −9.7 to −1.6). We further identified an inverted U-shaped relationship among premenopausal women, with a point of inflection at WC of 80 cm.
Conclusions
Our study found an inverse relationship between WC and lumbar BMD in middle-aged men with BMI ≥30 kg/m2, and women with BMI <25 kg/m2.
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Xiaoxia Jia in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yaxin An in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yuechao Xu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Yuxian Yang in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Chang Liu in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Dong Zhao in
Google Scholar
PubMed
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
Search for other papers by Jing Ke in
Google Scholar
PubMed
Background
Obesity is known as a common risk factor for osteoporosis and type 2 diabetes mellitus (T2DM). Perirenal fat, surrounding the kidneys, has been reported to be unique in anatomy and biological functions. This study aimed to explore the relationship between perirenal fat and bone metabolism in patients with T2DM.
Methods
A total of 234 patients with T2DM were recruited from September 2019 to December 2019 in the cross-sectional study. The biochemical parameters and bone turnover markers (BTMs) were determined in all participants. Perirenal fat thickness (PrFT) was performed by ultrasounds via a duplex Doppler apparatus. Associations between PrFT and bone metabolism index were determined via correlation analysis and regression models.
Results
The PrFT was significantly correlated with β-C-terminal telopeptides of type I collagen (β-CTX) (r = −0.14, P < 0.036), parathyroid hormone (iPTH) (r = −0.18, P ≤ 0.006), and 25 hydroxyvitamin D (25-OH-D) (r = −0.14, P = 0.001). Multivariate analysis confirmed that the association of PrFT and β-CTX (β = −0.136, P = 0.042) was independent of other variables.
Conclusion
This study showed a negative and independent association between PrFT and β-CTX in subjects with T2DM, suggesting a possible role of PrFT in bone metabolism. Follow-up studies and further research are necessary to validate the associations and to elucidate the underlying mechanisms.
Endocrine Unit, Royal Victoria Infirmary, Newcastle upon Tyne, UK
Search for other papers by Earn H Gan in
Google Scholar
PubMed
Search for other papers by Wendy Robson in
Google Scholar
PubMed
Search for other papers by Peter Murphy in
Google Scholar
PubMed
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
Search for other papers by Robert Pickard in
Google Scholar
PubMed
Endocrine Unit, Royal Victoria Infirmary, Newcastle upon Tyne, UK
Search for other papers by Simon Pearce in
Google Scholar
PubMed
Search for other papers by Rachel Oldershaw in
Google Scholar
PubMed
Background
The highly plastic nature of adrenal cortex suggests the presence of adrenocortical stem cells (ACSC), but the exact in vivo identity of ACSC remains elusive. A few studies have demonstrated the differentiation of adipose or bone marrow-derived mesenchymal stem cells (MSC) into steroid-producing cells. We therefore investigated the isolation of multipotent MSC from human adrenal cortex.
Methods
Human adrenals were obtained as discarded surgical material. Single-cell suspensions from human adrenal cortex (n = 3) were cultured onto either complete growth medium (CM) or MSC growth promotion medium (MGPM) in hypoxic condition. Following ex vivo expansion, their multilineage differentiation capacity was evaluated. Phenotype markers were analysed by immunocytochemistry and flow cytometry for cell-surface antigens associated with bone marrow MSCs and adrenocortical-specific phenotype. Expression of mRNAs for pluripotency markers was assessed by q-PCR.
Results
The formation of colony-forming unit fibroblasts comprising adherent cells with fibroblast-like morphology were observed from the monolayer cell culture, in both CM and MGPM. Cells derived from MGPM revealed differentiation towards osteogenic and adipogenic cell lineages. These cells expressed cell-surface MSC markers (CD44, CD90, CD105 and CD166) but did not express the haematopoietic, lymphocytic or HLA-DR markers. Flow cytometry demonstrated significantly higher expression of GLI1 in cell population harvested from MGPM, which were highly proliferative. They also exhibited increased expression of the pluripotency markers.
Conclusion
Our study demonstrates that human adrenal cortex harbours a mesenchymal stem cell-like population. Understanding the cell biology of adrenal cortex- derived MSCs will inform regenerative medicine approaches in autoimmune Addison’s disease.
Search for other papers by Kathrin R Frey in
Google Scholar
PubMed
Search for other papers by Tina Kienitz in
Google Scholar
PubMed
Search for other papers by Julia Schulz in
Google Scholar
PubMed
Search for other papers by Manfred Ventz in
Google Scholar
PubMed
Search for other papers by Kathrin Zopf in
Google Scholar
PubMed
Search for other papers by Marcus Quinkler in
Google Scholar
PubMed
Context
Patients with primary adrenal insufficiency (PAI) or congenital adrenal hyperplasia (CAH) receive life-long glucocorticoid (GC) therapy. Daily GC doses are often above the physiological cortisol production rate and can cause long-term morbidities such as osteoporosis. No prospective trial has investigated the long-term effect of different GC therapies on bone mineral density (BMD) in those patients.
Objectives
To determine if patients on hydrocortisone (HC) or prednisolone show changes in BMD after follow-up of 5.5 years. To investigate if BMD is altered after switching from immediate- to modified-release HC.
Design and patients
Prospective, observational, longitudinal study with evaluation of BMD by DXA at visit1, after 2.2 ± 0.4 (visit2) and after 5.5 ± 0.8 years (visit3) included 36 PAI and 8 CAH patients. Thirteen patients received prednisolone (age 52.5 ± 14.8 years; 8 women) and 31 patients received immediate-release HC (age 48.9 ± 15.8 years; 22 women). Twelve patients on immediate-release switched to modified-release HC at visit2.
Results
Prednisolone showed significantly lower Z-scores compared to HC at femoral neck (−0.85 ± 0.80 vs −0.25 ± 1.16, P < 0.05), trochanter (−0.96 ± 0.62 vs 0.51 ± 1.07, P < 0.05) and total hip (−0.78 ± 0.55 vs 0.36 ± 1.04, P < 0.05), but not at lumbar spine, throughout the study. Prednisolone dose decreased by 8% over study time, but no significant effect was seen on BMD. BMD did not change significantly after switching from immediate- to modified-release HC.
Conclusions
The use of prednisolone as hormone replacement therapy results in significantly lower BMD compared to HC. Patients on low-dose HC replacement therapy showed unchanged Z-scores within the normal reference range during the study period.
Search for other papers by Rui-yi Tang in
Google Scholar
PubMed
Search for other papers by Rong Chen in
Google Scholar
PubMed
Search for other papers by Miao Ma in
Google Scholar
PubMed
Search for other papers by Shou-qing Lin in
Google Scholar
PubMed
Search for other papers by Yi-wen Zhang in
Google Scholar
PubMed
Search for other papers by Ya-ping Wang in
Google Scholar
PubMed
Objective
To evaluate the clinical features of Chinese women with idiopathic hypogonadotropic hypogonadism (IHH).
Methods
We retrospectively reviewed the clinical characteristics, laboratory and imaging findings, therapeutic management and fertility outcomes of 138 women with IHH. All patients had been treated and followed up at an academic medical centre during 1990–2016.
Results
Among the 138 patients, 82 patients (59.4%) were diagnosed with normosmic IHH and 56 patients (40.6%) were diagnosed with Kallmann syndrome (KS). The patients with IHH experienced occasional menses (4.3%), spontaneous thelarche (45.7%) or spontaneous pubarche (50.7%). Women with thelarche had a higher percentage of pubarche (P < 0.001) and higher gonadotropin concentrations (P < 0.01). Olfactory bulb/sulci abnormalities were found during the magnetic resonance imaging (MRI) of all patients with KS. Most patients with IHH had osteopenia and low bone age. Among the 16 women who received gonadotropin-releasing hormone treatment, ovulation induction or assisted reproductive technology, the clinical pregnancy rate was 81.3% and the live birth rate was 68.8%.
Conclusions
The present study revealed that the phenotypic spectrum of women with IHH is broader than typical primary amenorrhoea with no secondary sexual development, including occasional menses, spontaneous thelarche or pubarche. MRI of the olfactory system can facilitate the diagnosis of KS. Pregnancy can be achieved after receiving appropriate treatment.