Search Results
Search for other papers by Behnaz Abiri in
Google Scholar
PubMed
Search for other papers by Majid Valizadeh in
Google Scholar
PubMed
Search for other papers by Amirhossein Ramezani Ahmadi in
Google Scholar
PubMed
Search for other papers by Shirin Amini in
Google Scholar
PubMed
Search for other papers by Mohammad Nikoohemmat in
Google Scholar
PubMed
Search for other papers by Faeze Abbaspour in
Google Scholar
PubMed
Search for other papers by Farhad Hosseinpanah in
Google Scholar
PubMed
Objectives
It has not been established whether vitamin D deficiency is associated with anthropometric state; therefore, this systematic review examined the relationship between serum vitamin D levels with anthropometrics and adiposity across different ages.
Methods
Studies that examined vitamin D deficiency with adiposity measures in different age groups were searched in the PubMed, Scopus, Embase, and Google Scholar databases until November 2023. Two investigators independently reviewed titles and abstracts, examined full-text articles, extracted data, and rated the quality in accordance with the Newcastle–Ottawa criteria.
Results
Seventy-two studies, with a total of 59,430 subjects, were included. Of these studies, 27 cross-sectional studies and one longitudinal study (with 25,615 participants) evaluated the possible link between 25(OH)D serum concentrations and anthropometric/adiposity indices in the pediatric population. Forty-two cross-sectional studies and two cohort investigations (with 33,815 participants) investigated the relationship between serum 25(OH)D levels and adiposity measures in adults and/or the elderly population. There is evidence supporting links between vitamin D deficiency and obesity, and revealed an inverse association between vitamin D and adiposity indicators, specifically in female subjects. However, the effects of several confounding factors should also be considered.
Conclusion
Most published studies, most of which were cross-sectional, reported a negative association between vitamin D and female adiposity indicators. Therefore, serum vitamin D levels should be monitored in overweight/obese individuals.
Search for other papers by Mengting Yin in
Google Scholar
PubMed
Search for other papers by Qianhui Liu in
Google Scholar
PubMed
Search for other papers by Qingzhong Wang in
Google Scholar
PubMed
Search for other papers by Yong He in
Google Scholar
PubMed
Search for other papers by Haolan Song in
Google Scholar
PubMed
Search for other papers by Xin Nie in
Google Scholar
PubMed
Search for other papers by Guixing Li in
Google Scholar
PubMed
Background
The diagnosis of primary hyperparathyroidism (PHPT) remains a challenge because of increased asymptomatic PHPT or patients with normocalcaemic PHPT (NPHPT). In addition, some primary hospitals in China have no equipment to measure parathyroid hormone (PTH) levels. Therefore, an additional, simple, and inexpensive laboratory biochemical marker is urgently needed. The calcium/phosphate (Ca/P) ratio and chloride/phosphate (Cl/P) ratio have been proposed as suitable tools to diagnose PHPT in Europe; however, the Ca/P ratio has never been tested in China. We aimed to conduct a confirmatory study to explore the diagnostic performance of the Ca/P ratio for PHPT in China.
Methods
From January 2015 to December 2020, a total of 155 patients who underwent parathyroidectomy (143 PHPT patients and 12 NPHPT patients) and 153 controls were enrolled in this single-center , retrospective study. Serum calcium, phosphate, parathyroid hormone, 25-hydroxyvitamin vitamin D (25(OH) vitamin D), chloride, alanine transaminase (ALT), aspartate aminotransaminase (AST), estimated glomerular filtration rate (eGFR), and creatinine levels were recorded for all the study participants. Pairwise comparisons were made between groups, and the diagnostic performance of the Ca/P ratio was determined using receiver-operating characteristic (ROC) analysis.
Results
Patients with PHPT had a higher Ca/P ratio than controls (P < 0.001). A Ca/P ratio above 2.94 with a sensitivity of 95.5% and specificity of 98.7% can distinguish PHPT patients from healthy individuals. This index was positively correlated with the PTH level (r = 0.875, P < 0.001).
Conclusion
The Ca/P ratio is an ideal and inexpensive indicator for diagnosing PHPT in China when using a cut-off value of 2.94.
Search for other papers by Mohammed S Razzaque in
Google Scholar
PubMed
Fibroblast growth factor‐23 (FGF23) controls the homeostasis of both phosphate and vitamin D. Bone-derived FGF23 can suppress the transcription of 1α‐hydroxylase (1α(OH)ase) to reduce renal activation of vitamin D (1,25(OH)2D3). FGF23 can also activate the transcription of 24‐hydroxylase to enhance the renal degradation process of vitamin D. There is a counter-regulation for FGF23 and vitamin D; 1,25(OH)2D3 induces the skeletal synthesis and the release of FGF23, while FGF23 can suppress the production of 1,25(OH)2D3 by inhibiting 1α(OH)ase synthesis. Genetically ablating FGF23 activities in mice resulted in higher levels of renal 1α(OH)ase, which is also reflected in an increased level of serum 1,25(OH)2D3, while genetically ablating 1α(OH)ase activities in mice reduced the serum levels of FGF23. Similar feedback control of FGF23 and vitamin D is also detected in various human diseases. Further studies are required to understand the subcellular molecular regulation of FGF23 and vitamin D in health and disease.
Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
Search for other papers by Elisabet Einarsdottir in
Google Scholar
PubMed
Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Search for other papers by Minna Pekkinen in
Google Scholar
PubMed
Competence Centre on Health Technologies, Tartu, Estonia
Search for other papers by Kaarel Krjutškov in
Google Scholar
PubMed
Search for other papers by Shintaro Katayama in
Google Scholar
PubMed
Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
School of Basic and Medical Biosciences, King’s College London, Guy’s Hospital, London, United Kingdom
Search for other papers by Juha Kere in
Google Scholar
PubMed
Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Outi Mäkitie in
Google Scholar
PubMed
Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Search for other papers by Heli Viljakainen in
Google Scholar
PubMed
Objective
The effect of vitamin D at the transcriptome level is poorly understood, and furthermore, it is unclear if it differs between obese and normal-weight subjects. The objective of the study was to explore the transcriptome effects of vitamin D supplementation.
Design and methods
We analysed peripheral blood gene expression using GlobinLock oligonucleotides followed by RNA sequencing in individuals participating in a 12-week randomised double-blinded placebo-controlled vitamin D intervention study. The study involved 18 obese and 18 normal-weight subjects (of which 20 males) with mean (±s.d.) age 20.4 (±2.5) years and BMIs 36 (±10) and 23 (±4) kg/m2, respectively. The supplemental daily vitamin D dose was 50 µg (2000 IU). Data were available at baseline, 6- and 12-week time points and comparisons were performed between the vitamin D and placebo groups separately in obese and normal-weight subjects.
Results
Significant transcriptomic changes were observed at 6 weeks, and only in the obese subjects: 1724 genes were significantly upregulated and 186 genes were downregulated in the vitamin D group compared with placebo. Further analyses showed several enriched gene categories connected to mitochondrial function and metabolism, and the most significantly enriched pathway was related to oxidative phosphorylation (adjusted P value 3.08 × 10−14). Taken together, our data suggest an effect of vitamin D supplementation on mitochondrial function in obese subjects.
Conclusions
Vitamin D supplementation affects gene expression in obese, but not in normal-weight subjects. The altered genes are enriched in pathways related to mitochondrial function. The present study increases the understanding of the effects of vitamin D at the transcriptome level.
Search for other papers by Nancy Martini in
Google Scholar
PubMed
Search for other papers by Lucas Streckwall in
Google Scholar
PubMed
Search for other papers by Antonio Desmond McCarthy in
Google Scholar
PubMed
In post-menopausal women, aged individuals, and patients with diabetes mellitus or chronic renal disease, bone mineral density (BMD) decreases while the vasculature accumulates arterial calcifications (ACs). AC can be found in the tunica intima and/or in the tunica media. Prospective studies have shown that patients with initially low BMD and/or the presence of fragility fractures have at follow-up a significantly increased risk for coronary and cerebrovascular events and for overall cardiovascular mortality. Similarly, patients presenting with abdominal aorta calcifications (an easily quantifiable marker of vascular pathology) show a significant decrease in the BMD (and an increase in the fragility) of bones irrigated by branches of the abdominal aorta, such as the hip and lumbar spine. AC induction is an ectopic tissue biomineralization process promoted by osteogenic transdifferentiation of vascular smooth muscle cells as well as by local and systemic secreted factors. In many cases, the same regulatory molecules modulate bone metabolism but in reverse. Investigation of animal and in vitro models has identified several potential mechanisms for this reciprocal bone–vascular regulation, such as vitamin K and D sufficiency, advanced glycation end-products–RAGE interaction, osteoprotegerin/RANKL/RANK, Fetuin A, oestrogen deficiency and phytooestrogen supplementation, microbiota and its relation to diet, among others. Complete elucidation of these potential mechanisms, as well as their clinical validation via controlled studies, will provide a basis for pharmacological intervention that could simultaneously promote bone and vascular health.
Search for other papers by Shu-Meng Hu in
Google Scholar
PubMed
Search for other papers by Yang-Juan Bai in
Google Scholar
PubMed
Search for other papers by Ya-Mei Li in
Google Scholar
PubMed
Search for other papers by Ye Tao in
Google Scholar
PubMed
Search for other papers by Xian-Ding Wang in
Google Scholar
PubMed
Search for other papers by Tao Lin in
Google Scholar
PubMed
Search for other papers by Lan-Lan Wang in
Google Scholar
PubMed
Search for other papers by Yun-Ying Shi in
Google Scholar
PubMed
Introduction
Tertiary hyperparathyroidism (THPT) and vitamin D deficiency are commonly seen in kidney transplant recipients, which may result in persistently elevated fibroblast growth factor 23 (FGF23) level after transplantation and decreased graft survival. The aim of this study is to evaluate the effect of vitamin D supplementation on THPT, FGF23-alpha Klotho (KLA) axis and cardiovascular complications after transplantation.
Materials and methods
Two hundred nine kidney transplant recipients were included and further divided into treated and untreated groups depending on whether they received vitamin D supplementation. We tracked the state of THPT, bone metabolism and FGF23–KLA axis within 12 months posttransplant and explored the predictors and risk factors for intact FGF23 levels, KLA levels, THPT and cardiovascular complications in recipients.
Results
Vitamin D supplementation significantly improved FGF23 resistance, THPT and high bone turnover status, preserved better graft function and prevented coronary calcification in the treated group compared to the untreated group at month 12. The absence of vitamin D supplementation was an independent risk factor for THPT and a predictor for intact FGF23 and KLA levels at month 12. Age and vitamin D deficiency were independent risk factors for coronary calcification in recipients at month 12.
Conclusion
Vitamin D supplementation effectively improved THPT, FGF23 resistance and bone metabolism, preserved graft function and prevented coronary calcification after transplantation.
Search for other papers by Kevin D Cashman in
Google Scholar
PubMed
Background
Internationally, concern has been repeatedly raised about the little notable progress in the collection, analysis and use of population micronutrient status and deficiency data globally. The need for representative status and intake data for vitamin D has been highlighted as a research priority for well over a decade.
Aim and methods
A narrative review which aims to provide a summary and assessment of vitamin D nutritional status data globally. This review divides the world into the Food and Agriculture Organisation’s (FAO) major regions: the Americas, Europe, Oceania, Africa and Asia. Emphasis was placed on published data on the prevalence of serum 25-hydroxyvitamin D (25(OH)D) < 25/30 and <50 nmol/L (reflecting vitamin D deficiency and inadequacy, respectively) as well as vitamin D intake, where possible from nationally representative surveys.
Results
Collating data from the limited number of available representative surveys from individual countries might suggest a relatively low overall prevalence of vitamin D deficiency in South America, Oceania and North America, whereas there is more moderate prevalence in Europe and Asia, and possibly Africa. Overall, the prevalence of serum 25(OH)D < 25/30 and <50 nmol/L ranges from ~5 to 18% and 24 to 49%, respectively, depending on FAO world region. Usual intakes of vitamin D can also vary by FAO world region, but in general, with a few exceptions, there are very high levels of inadequacy of vitamin D intake.
Conclusions
While the burden of vitamin D deficiency and inadequacy varies by world regions and not just by UVB availability, the global burden overall translates into enormous numbers of individuals at risk.
Search for other papers by Shatha Alharazy in
Google Scholar
PubMed
Search for other papers by M Denise Robertson in
Google Scholar
PubMed
Search for other papers by Susan Lanham-New in
Google Scholar
PubMed
Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
Search for other papers by Muhammad Imran Naseer in
Google Scholar
PubMed
Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
Centre for Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
Search for other papers by Adeel G Chaudhary in
Google Scholar
PubMed
Search for other papers by Eman Alissa in
Google Scholar
PubMed
Background
Measurement of free 25-hydroyvitamin D (25(OH)D) status has been suggested as a more representative marker of vitamin D status than that of total 25(OH)D. Previously, free 25(OH)D could only be calculated indirectly; however, a newly developed direct assay for the measurement of free 25(OH)D is now available. The aim of this study therefore was to investigate directly measured total and free vitamin D levels association with metabolic health in postmenopausal healthy women living in Saudi Arabia.
Methods
A sample of 302 postmenopausal women aged ≥50 years (n = 302) living in Saudi Arabia were recruited in a cross-sectional study design. Blood samples were collected from subjects for measurement of serum levels of total 25(OH)D, directly measured free 25(OH)D, metabolic bone parameters, lipid profile, and other biochemical tests.
Results
A positive correlation was found between directly measured free and total 25(OH)D (r = 0.64, P< 0.0001). Total but not free 25(OH)D showed significant association with serum intact parathyroid hormone (P = 0.004), whilst free 25(OH)D but not total 25(OH)D showed a significant association with total cholesterol and LDL-C (P = 0.032 and P = 0.045, respectively).
Conclusions
Free 25(OH)D and total 25(OH)D were found to be consistently correlated but with different associations to metabolic health parameters. Further research is needed to determine which marker of vitamin D status would be the most appropriate in population studies.
Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Amarjit Saini in
Google Scholar
PubMed
Search for other papers by Linda Björkhem-Bergman in
Google Scholar
PubMed
Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Johan Boström in
Google Scholar
PubMed
Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Mats Lilja in
Google Scholar
PubMed
Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
Unit of Cardiology, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Michael Melin in
Google Scholar
PubMed
Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Karl Olsson in
Google Scholar
PubMed
Search for other papers by Lena Ekström in
Google Scholar
PubMed
Search for other papers by Peter Bergman in
Google Scholar
PubMed
Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Mikael Altun in
Google Scholar
PubMed
Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
Unit of Cardiology, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Eric Rullman in
Google Scholar
PubMed
Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Thomas Gustafsson in
Google Scholar
PubMed
The CC genotype of the vitamin D receptor (VDR) polymorphism TaqI rs731236 has previously been associated with a higher risk of developing myopathy compared to TT carriers. However, the mechanistic role of this polymorphism in skeletal muscle is not well defined. The effects of vitamin D on patients genotyped for the VDR polymorphism TaqI rs731236, comparing CC and TT carriers were evaluated. Primary human myoblasts isolated from 4 CC carriers were compared with myoblasts isolated from four TT carriers and treated with vitamin D in vitro. A dose-dependent inhibitory effect on myoblast proliferation and differentiation was observed concurrent with modifications of key myogenic regulatory factors. RNA sequencing revealed a vitamin D dose–response gene signature enriched with a higher number of VDR-responsive elements (VDREs) per gene. Interestingly, the greater the expression of muscle differentiation markers in myoblasts, the more pronounced was the vitamin D-mediated response to suppress genes associated with myogenic fusion and myotube formation. This novel finding provides a mechanistic explanation to the inconsistency regarding previous reports of the role of vitamin D in myoblast differentiation. No effects in myoblast proliferation, differentiation or gene expression were related to CC vs TT carriers. Our findings suggest that the VDR polymorphism TaqI rs731236 comparing CC vs TT carriers did not influence the effects of vitamin D on primary human myoblasts and that vitamin D inhibits myoblast proliferation and differentiation through key regulators of cell cycle progression. Future studies need to employ strategies to identify the primary responses of vitamin D that drive the cellular response towards quiescence.
Search for other papers by Jennifer K Y Ko in
Google Scholar
PubMed
Search for other papers by Jinghua Shi in
Google Scholar
PubMed
Search for other papers by Raymond H W Li in
Google Scholar
PubMed
Search for other papers by William S B Yeung in
Google Scholar
PubMed
Search for other papers by Ernest H Y Ng in
Google Scholar
PubMed
Objective
Vitamin D receptors are present in the female reproductive tract. Studies on the association between serum vitamin D level and pregnancy rate of in vitro fertilization (IVF) showed inconsistent results and focused on a single fresh or frozen embryo transfer cycle. The objective of our study was to evaluate if serum vitamin D level before ovarian stimulation was associated with the cumulative live birth rate (CLBR) of the first IVF cycle.
Design
Retrospective cohort study.
Methods
Women who underwent the first IVF cycle from 2012 to 2016 at a university-affiliated reproductive medicine center were included. Archived serum samples taken before ovarian stimulation were analyzed for 25(OH)D levels using liquid chromatography-mass spectrometry.
Results
In total, 1113 had pregnancy outcome from the completed IVF cycle. The median age (25th–75th percentile) of the women was 36 (34–38) years and serum 25(OH)D level was 53.4 (41.9–66.6) nmol/L. The prevalence of vitamin D deficiency (less than 50 nmol/L) was 42.2%. The CLBR in the vitamin D-deficient group was significantly lower compared to the non-deficient group (43.9%, 208/474 vs 50.9%, 325/639, P = 0.021, unadjusted), and after controlling for women’s age, BMI, antral follicle count, type and duration of infertility. There were no differences in the clinical/ongoing pregnancy rate, live birth rate and miscarriage rate in the fresh cycle between the vitamin D deficient and non-deficient groups.
Conclusions
Vitamin D deficiency was prevalent in infertile women in subtropical Hong Kong. The CLBR of the first IVF cycle in the vitamin D-deficient group was significantly lower compared to the non-deficient group.