Search Results
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Elinor Chelsom Vogt in
Google Scholar
PubMed
Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
Search for other papers by Francisco Gómez Real in
Google Scholar
PubMed
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Eystein Sverre Husebye in
Google Scholar
PubMed
Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Sigridur Björnsdottir in
Google Scholar
PubMed
Department of Sleep, Landspitali University Hospital Reykjavík, Reykjavik, Iceland
Search for other papers by Bryndis Benediktsdottir in
Google Scholar
PubMed
Search for other papers by Randi Jacobsen Bertelsen in
Google Scholar
PubMed
Search for other papers by Pascal Demoly in
Google Scholar
PubMed
Search for other papers by Karl Anders Franklin in
Google Scholar
PubMed
Search for other papers by Leire Sainz de Aja Gallastegui in
Google Scholar
PubMed
Search for other papers by Francisco Javier Callejas González in
Google Scholar
PubMed
Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
Search for other papers by Joachim Heinrich in
Google Scholar
PubMed
Search for other papers by Mathias Holm in
Google Scholar
PubMed
Search for other papers by Nils Oscar Jogi in
Google Scholar
PubMed
Search for other papers by Benedicte Leynaert in
Google Scholar
PubMed
Search for other papers by Eva Lindberg in
Google Scholar
PubMed
Search for other papers by Andrei Malinovschi in
Google Scholar
PubMed
Albacete Faculty of Medicine, Castilla-La Mancha University, Albacete, Spain
Search for other papers by Jesús Martínez-Moratalla in
Google Scholar
PubMed
Search for other papers by Raúl Godoy Mayoral in
Google Scholar
PubMed
Search for other papers by Anna Oudin in
Google Scholar
PubMed
Search for other papers by Antonio Pereira-Vega in
Google Scholar
PubMed
Search for other papers by Chantal Raherison Semjen in
Google Scholar
PubMed
The National Research Center for the Working Environment, Copenhagen, Denmark
Search for other papers by Vivi Schlünssen in
Google Scholar
PubMed
Search for other papers by Kai Triebner in
Google Scholar
PubMed
K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Marianne Øksnes in
Google Scholar
PubMed
Objective
To investigate markers of premature menopause (<40 years) and specifically the prevalence of autoimmune primary ovarian insufficiency (POI) in European women.
Design
Postmenopausal women were categorized according to age at menopause and self-reported reason for menopause in a cross-sectional analysis of 6870 women.
Methods
Variables associated with the timing of menopause and hormone measurements of 17β-estradiol and follicle-stimulating hormone were explored using multivariable logistic regression analysis. Specific immunoprecipitating assays of steroidogenic autoantibodies against 21-hydroxylase (21-OH), side-chain cleavage enzyme (anti-SCC) and 17alpha-hydroxylase (17 OH), as well as NACHT leucine-rich-repeat protein 5 were used to identify women with likely autoimmune POI.
Results
Premature menopause was identified in 2.8% of women, and these women had higher frequencies of nulliparity (37.4% vs 19.7%), obesity (28.7% vs 21.4%), osteoporosis (17.1% vs 11.6%), hormone replacement therapy (59.1% vs 36.9%) and never smokers (60.1% vs 50.9%) (P < 0.05), compared to women with menopause ≥40 years. Iatrogenic causes were found in 91 (47%) and non-ovarian causes in 27 (14%) women, while 77 (39%) women were classified as POI of unknown cause, resulting in a 1.1% prevalence of idiopathic POI. After adjustments nulliparity was the only variable significantly associated with POI (odds ratio 2.46; 95% CI 1.63–3.42). Based on the presence of autoantibodies against 21 OH and SCC, 4.5% of POI cases were of likely autoimmune origin.
Conclusion
Idiopathic POI affects 1.1% of all women and almost half of the women with premature menopause. Autoimmunity explains 4.5% of these cases judged by positive steroidogenic autoantibodies.
Search for other papers by Panagiotis Anagnostis in
Google Scholar
PubMed
Search for other papers by Irene Lambrinoudaki in
Google Scholar
PubMed
Search for other papers by John C Stevenson in
Google Scholar
PubMed
Search for other papers by Dimitrios G Goulis in
Google Scholar
PubMed
Cardiovascular disease (CVD) is of major concern in women entering menopause. The changing hormonal milieu predisposes them to increased CVD risk, due to a constellation of risk factors, such as visceral obesity, atherogenic dyslipidemia, dysregulation in glucose homeostasis, non-alcoholic fatty liver disease and arterial hypertension. However, an independent association of menopause per se with increased risk of CVD events has only been proven for early menopause (<45 years). Menopausal hormone therapy (MHT) ameliorates most of the CVD risk factors mentioned above. Transdermal estrogens are the preferable regimen, since they do not increase triglyceride concentrations and they are not associated with increased risk of venous thromboembolic events (VTE). Although administration of MHT should be considered on an individual basis, MHT may reduce CVD morbidity and mortality, if commenced during the early postmenopausal period (<60 years or within ten years since the last menstrual period). In women with premature ovarian insufficiency (POI), MHT should be administered at least until the average age of menopause (50–52 years). MHT is contraindicated in women with a history of VTE and is not currently recommended for the sole purpose of CVD prevention. The risk of breast cancer associated with MHT is generally low and is mainly conferred by the progestogen. Micronized progesterone and dydrogesterone are associated with lower risk compared to other progestogens.
Search for other papers by Silvia Ciancia in
Google Scholar
PubMed
Search for other papers by Vanessa Dubois in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Both in the United States and Europe, the number of minors who present at transgender healthcare services before the onset of puberty is rapidly expanding. Many of those who will have persistent gender dysphoria at the onset of puberty will pursue long-term puberty suppression before reaching the appropriate age to start using gender-affirming hormones. Exposure to pubertal sex steroids is thus significantly deferred in these individuals. Puberty is a critical period for bone development: increasing concentrations of estrogens and androgens (directly or after aromatization to estrogens) promote progressive bone growth and mineralization and induce sexually dimorphic skeletal changes. As a consequence, safety concerns regarding bone development and increased future fracture risk in transgender youth have been raised. We here review published data on bone development in transgender adolescents, focusing in particular on differences in age and pubertal stage at the start of puberty suppression, chosen strategy to block puberty progression, duration of puberty suppression, and the timing of re-evaluation after estradiol or testosterone administration. Results consistently indicate a negative impact of long-term puberty suppression on bone mineral density, especially at the lumbar spine, which is only partially restored after sex steroid administration. Trans girls are more vulnerable than trans boys for compromised bone health. Behavioral health measures that can promote bone mineralization, such as weight-bearing exercise and calcium and vitamin D supplementation, are strongly recommended in transgender youth, during the phase of puberty suppression and thereafter.
Search for other papers by Charissa van Zwol-Janssens in
Google Scholar
PubMed
Search for other papers by Aglaia Hage in
Google Scholar
PubMed
Search for other papers by Kim van der Ham in
Google Scholar
PubMed
Search for other papers by Birgitta K Velthuis in
Google Scholar
PubMed
Search for other papers by Ricardo P J Budde in
Google Scholar
PubMed
Search for other papers by Maria P H Koster in
Google Scholar
PubMed
Search for other papers by Arie Franx in
Google Scholar
PubMed
Search for other papers by Bart C J M Fauser in
Google Scholar
PubMed
Search for other papers by Eric Boersma in
Google Scholar
PubMed
Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
Search for other papers by Daniel Bos in
Google Scholar
PubMed
Search for other papers by Joop S E Laven in
Google Scholar
PubMed
Search for other papers by Yvonne V Louwers in
Google Scholar
PubMed
Search for other papers by the CREW consortium in
Google Scholar
PubMed
Besides age, estrogen exposure plays a crucial role in changes in bone density (BD) in women. Premature ovarian insufficiency (POI) and polycystic ovary syndrome (PCOS) are conditions in reproductive-aged women in which the exposure to estrogen is substantially different. Women with a history of preeclampsia (PE) are expected to have normal estrogen exposure. Within the CREw-IMAGO study, we investigated if trabecular BD is different in these women because of differences in the duration of estrogen exposure. Trabecular BD was measured in thoracic vertebrae on coronary CT scans. Women with a reduced estrogen exposure (POI) have a lower BD compared to women with an intermediate exposure (PE) (mean difference (MD) −26.8, 95% CI −37.2 to −16.3). Women with a prolonged estrogen exposure (PCOS) have the highest BD (MD 15.0, 95% CI 4.3–25.7). These results support the hypothesis that the duration of estrogen exposure in these women is associated with trabecular BD.
Significance statement
Our results suggest that middle-aged women with PCOS have a higher BD and women with POI have a lower BD. We hypothesized that this is due to either a prolonged estrogen exposure, as seen in women with PCOS, or a reduced estrogen exposure, as in women with POI. In the counseling of women with reproductive disorders on long-term health issues, coronary CT provides a unique opportunity to assess both coronary artery calcium score for cardiovascular screening as well as trabecular BD.