Search Results
Search for other papers by Ursula M M Costa in
Google Scholar
PubMed
Search for other papers by Carla R P Oliveira in
Google Scholar
PubMed
Search for other papers by Roberto Salvatori in
Google Scholar
PubMed
Search for other papers by José A S Barreto-Filho in
Google Scholar
PubMed
Search for other papers by Viviane C Campos in
Google Scholar
PubMed
Search for other papers by Francielle T Oliveira in
Google Scholar
PubMed
Search for other papers by Ivina E S Rocha in
Google Scholar
PubMed
Search for other papers by Joselina L M Oliveira in
Google Scholar
PubMed
Search for other papers by Wersley A Silva in
Google Scholar
PubMed
Search for other papers by Manuel H Aguiar-Oliveira in
Google Scholar
PubMed
Abstract
GH and its principal mediator IGF1 have important effects on metabolic and cardiovascular (CV) status. While acquired GH deficiency (GHD) is often associated with increased CV risk, the consequences of congenital GHD are not known. We have described a large group of patients with isolated GHD (IGHD) due to a homozygous mutation (c.57+1G>A) in the GH releasing hormone receptor gene, and shown that adult GH-naïve individuals have no evidence of clinically evident premature atherosclerosis. To test whether subclinical atherosclerosis is anticipated in untreated IGHD, we performed a cross-sectional study of 25 IGHD and 27 adult controls matched for age and gender. A comprehensive clinical and biochemical panel and coronary artery calcium scores were evaluated by multi-detector tomography. Height, weight, IGF1, homeostasis model assessment of insulin resistance, creatinine and creatininekinase were lower in the IGHD group. Median and interquartile range of calcium scores distribution was similar in the two groups: IGHD 0(0) and control 0(4.9). The vast majority of the calcium scores (20 of 25 IGHD (80%) and 18 of 27 controls (66.6%)) were equal to zero (difference not significant). There was no difference in the calcium scores classification. None of IGHD subjects had minimal calcification, which were present in four controls. Three IGHD and four controls had mild calcification. There were two IGHD individuals with moderate calcification and one control with severe calcification. Our study provides evidence that subjects with congenital isolated lifetime and untreated severe IGHD do not have accelerated subclinical coronary atherosclerosis.
Regenerative Medicine Institute at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
Search for other papers by Tomás P Griffin in
Google Scholar
PubMed
Search for other papers by Caroline M Joyce in
Google Scholar
PubMed
Search for other papers by Sumaya Alkanderi in
Google Scholar
PubMed
Search for other papers by Liam M Blake in
Google Scholar
PubMed
Search for other papers by Derek T O’Keeffe in
Google Scholar
PubMed
Search for other papers by Delia Bogdanet in
Google Scholar
PubMed
Department of Clinical Biochemistry, SUHCG, GUH, Galway, Ireland
Search for other papers by Md Nahidul Islam in
Google Scholar
PubMed
Lambe Institute for Translational Research, School of Medicine, NUIG, Galway, Ireland
Search for other papers by Michael C Dennedy in
Google Scholar
PubMed
Search for other papers by John E Gillan in
Google Scholar
PubMed
Search for other papers by John J Morrison in
Google Scholar
PubMed
Regenerative Medicine Institute at CÚRAM SFI Research Centre, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
Search for other papers by Timothy O’Brien in
Google Scholar
PubMed
Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
Search for other papers by John A Sayer in
Google Scholar
PubMed
Search for other papers by Marcia Bell in
Google Scholar
PubMed
Search for other papers by Paula M O’Shea in
Google Scholar
PubMed
Introduction
Inactivating mutations in CYP24A1, encoding vitamin D-24-hydroxylase, can lead to an accumulation of active vitamin D metabolites and consequent hypercalcaemia. Patient (infantile and adult) presentation is varied and includes mild-severe hypercalcaemia, hypercalciuria, nephrocalcinosis and nephrolithiasis. This study aimed to characterize the clinical and biochemical phenotypes of a family with two CYP24A1 missense variants.
Methods
The proband and seven family members underwent detailed clinical and biochemical evaluation. Laboratory measurements included serum calcium, intact parathyroid hormone (iPTH), vitamin D metabolites and urine calcium and creatinine.
Results
The proband presented during the second trimester of a planned pregnancy with flu-like symptoms. Laboratory tests showed elevated adjusted calcium of 3.27 (upper reference limit (URL: 2.30) mmol/L), suppressed iPTH (<6 ng/L), elevated 25(OH)D (264 (URL: 55) nmol/L) and elevated 1,25(OH)D (293 (URL: <280) pmol/L). Ionized calcium was 1.55 (URL: 1.28) mmol/L. Sanger sequencing revealed two heterozygous missense variants in the CYP24A1: p.(Arg439Cys), R439C and p.(Trp275Arg), W275R. The proband’s brother and sister had the same genotype. The brother had intermittent hypercalcaemia and hypervitaminosis D. Only the sister had a history of nephrolithiasis. The proband’s daughter and two nephews were heterozygous for the R439C variant. The proband and her brother frequently had elevated 25(OH)D:24,25(OH)2D ratios (>50) during follow-up.
Conclusions
W275R is a new pathogenic CYP24A1 mutation in compound heterozygotic form with R439C in this family.
Search for other papers by Kate E Lines in
Google Scholar
PubMed
Search for other papers by Mahsa Javid in
Google Scholar
PubMed
Search for other papers by Anita A C Reed in
Google Scholar
PubMed
Search for other papers by Gerard V Walls in
Google Scholar
PubMed
Search for other papers by Mark Stevenson in
Google Scholar
PubMed
Search for other papers by Michelle Simon in
Google Scholar
PubMed
Search for other papers by Kreepa G Kooblall in
Google Scholar
PubMed
Search for other papers by Sian E Piret in
Google Scholar
PubMed
Search for other papers by Paul T Christie in
Google Scholar
PubMed
Search for other papers by Paul J Newey in
Google Scholar
PubMed
Search for other papers by Ann-Marie Mallon in
Google Scholar
PubMed
Search for other papers by Rajesh V Thakker in
Google Scholar
PubMed
Multiple endocrine neoplasia type 1 (MEN1), an autosomal dominant disorder caused by MEN1 germline mutations, is characterised by parathyroid, pancreatic and pituitary tumours. MEN1 mutations also cause familial isolated primary hyperparathyroidism (FIHP), a milder condition causing hyperparathyroidism only. Identical mutations can cause either MEN1 or FIHP in different families, thereby implicating a role for genetic modifiers in altering phenotypic expression of tumours. We therefore investigated the effects of genetic background and potential for genetic modifiers on tumour development in adult Men1+/- mice, which develop tumours of the parathyroids, pancreatic islets, anterior pituitary, adrenal cortex and gonads, that had been backcrossed to generate C57BL/6 and 129S6/SvEv congenic strains. A total of 275 Men1+/- mice, aged 5–26 months were macroscopically studied, and this revealed that genetic background significantly influenced the development of pituitary, adrenal and ovarian tumours, which occurred in mice over 12 months of age and more frequently in C57BL/6 females, 129S6/SvEv males and 129S6/SvEv females, respectively. Moreover, pituitary and adrenal tumours developed earlier, in C57BL/6 males and 129S6/SvEv females, respectively, and pancreatic and testicular tumours developed earlier in 129S6/SvEv males. Furthermore, glucagon-positive staining pancreatic tumours occurred more frequently in 129S6/SvEv Men1+/- mice. Whole genome sequence analysis of 129S6/SvEv and C57BL/6 Men1+/- mice revealed >54,000 different variants in >300 genes. These included, Coq7, Dmpk, Ccne2, Kras, Wnt2b, Il3ra and Tnfrsf10a, and qRT-PCR analysis revealed that Kras was significantly higher in pituitaries of male 129S6/SvEv mice. Thus, our results demonstrate that Kras and other genes could represent possible genetic modifiers of Men1.
Search for other papers by Kristin Godang in
Google Scholar
PubMed
Search for other papers by Karolina Lundstam in
Google Scholar
PubMed
Search for other papers by Charlotte Mollerup in
Google Scholar
PubMed
Search for other papers by Stine Lyngvi Fougner in
Google Scholar
PubMed
Search for other papers by Ylva Pernow in
Google Scholar
PubMed
Search for other papers by Jörgen Nordenström in
Google Scholar
PubMed
Search for other papers by Thord Rosén in
Google Scholar
PubMed
Search for other papers by Svante Jansson in
Google Scholar
PubMed
Search for other papers by Mikael Hellström in
Google Scholar
PubMed
Faculty of Medicine, University of Oslo, Oslo, Norway
Search for other papers by Jens Bollerslev in
Google Scholar
PubMed
Faculty of Medicine, University of Oslo, Oslo, Norway
Search for other papers by Ansgar Heck in
Google Scholar
PubMed
Search for other papers by the SIPH Study Group in
Google Scholar
PubMed
Context
Mild primary hyperparathyroidism has been associated with increased body fat mass and unfavorable cardiovascular risk factors.
Objective
To assess the effect of parathyroidectomy on fat mass, glucose and lipid metabolism.
Design, patients, interventions, main outcome measures
119 patients previously randomized to observation (OBS; n = 58) or parathyroidectomy (PTX; n = 61) within the Scandinavian Investigation of Primary Hyperparathyroidism (SIPH) trial, an open randomized multicenter study, were included. Main outcome measures for this study were the differences in fat mass, markers for lipid and glucose metabolism between OBS and PTX 5 years after randomization.
Results
In the OBS group, total cholesterol (Total-C) decreased from mean 5.9 (±1.1) to 5.6 (±1.0) mmol/L (P = 0.037) and LDL cholesterol (LDL-C) decreased from 3.7 (±1.0) to 3.3 (±0.9) mmol/L (P = 0.010). In the PTX group, the Total-C and LDL-C remained unchanged resulting in a significant between-group difference over time (P = 0.013 and P = 0.026, respectively). This difference was driven by patients who started with lipid-lowering medication during the study period (OBS: 5; PTX: 1). There was an increase in trunk fat mass in the OBS group, but no between-group differences over time. Mean 25(OH) vitamin D increased in the PTX group (P < 0.001), but did not change in the OBS group. No difference in parameters of glucose metabolism was detected.
Conclusion
In mild PHPT, the measured metabolic and cardiovascular risk factors were not modified by PTX. Observation seems safe and cardiovascular risk reduction should not be regarded as a separate indication for parathyroidectomy based on the results from this study.
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Marie Reeberg Sass in
Google Scholar
PubMed
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Search for other papers by Nicolai Jacob Wewer Albrechtsen in
Google Scholar
PubMed
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Department of Endocrinology and Nephrology, Nordsjællands University Hospital, Hillerød, Denmark
Search for other papers by Jens Pedersen in
Google Scholar
PubMed
Search for other papers by Kristine Juul Hare in
Google Scholar
PubMed
Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
Search for other papers by Nis Borbye-Lorenzen in
Google Scholar
PubMed
Search for other papers by Katalin Kiss in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
Search for other papers by Tina Vilsbøll in
Google Scholar
PubMed
Steno Diabetes Center Copenhagen, Gentofte, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
Search for other papers by Filip Krag Knop in
Google Scholar
PubMed
Search for other papers by Steen Seier Poulsen in
Google Scholar
PubMed
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Niklas Rye Jørgensen in
Google Scholar
PubMed
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Jens Juul Holst in
Google Scholar
PubMed
Search for other papers by Cathrine Ørskov in
Google Scholar
PubMed
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Search for other papers by Bolette Hartmann in
Google Scholar
PubMed
Objective:
Parathyroid hormone (PTH) is a key hormone in regulation of calcium homeostasis and its secretion is regulated by calcium. Secretion of PTH is attenuated during intake of nutrients, but the underlying mechanism(s) are unknown. We hypothesized that insulin acts as an acute regulator of PTH secretion.
Methods:
Intact PTH was measured in plasma from patients with T1D and matched healthy individuals during 4-h oral glucose tolerance tests (OGTT) and isoglycemic i.v. glucose infusions on 2 separate days. In addition, expression of insulin receptors on surgical specimens of parathyroid glands was assessed by immunochemistry (IHC) and quantitative PCR (qPCR).
Results:
The inhibition of PTH secretion was more pronounced in healthy individuals compared to patients with T1D during an OGTT (decrementalAUC0–240min: −5256 ± 3954 min × ng/L and −2408 ± 1435 min × ng/L, P = 0.030). Insulin levels correlated significantly and inversely with PTH levels, also after adjusting for levels of several gut hormones and BMI (P = 0.002). Expression of insulin receptors in human parathyroid glands was detected by both IHC and qPCR.
Conclusion:
Our study suggests that insulin may act as an acute regulator of PTH secretion in humans.
Search for other papers by Gabriella Oliveira Lima in
Google Scholar
PubMed
Search for other papers by Alex Luiz Menezes da Silva in
Google Scholar
PubMed
Search for other papers by Julianne Elba Cunha Azevedo in
Google Scholar
PubMed
Search for other papers by Chirlene Pinheiro Nascimento in
Google Scholar
PubMed
Search for other papers by Luana Rodrigues Vieira in
Google Scholar
PubMed
Search for other papers by Akira Otake Hamoy in
Google Scholar
PubMed
Search for other papers by Luan Oliveira Ferreira in
Google Scholar
PubMed
Search for other papers by Verônica Regina Lobato Oliveira Bahia in
Google Scholar
PubMed
Search for other papers by Nilton Akio Muto in
Google Scholar
PubMed
Search for other papers by Dielly Catrina Favacho Lopes in
Google Scholar
PubMed
Search for other papers by Moisés Hamoy in
Google Scholar
PubMed
Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.
Search for other papers by Glenville Jones in
Google Scholar
PubMed
Vitamin D has many physiological functions including upregulation of intestinal calcium and phosphate absorption, mobilization of bone resorption, renal reabsorption of calcium as well as actions on a variety of pleiotropic functions. It is believed that many of the hormonal effects of vitamin D involve a 1,25-dihydroxyvitamin D3-vitamin D receptor-mediated transcriptional mechanism involving binding to the cellular chromatin and regulating hundreds of genes in many tissues. This comprehensive historical review provides a unique perspective of the many steps of the discovery of vitamin D and its deficiency disease, rickets, stretching from 1650 until the present. The overview is divided into four distinct historical phases which cover the major developments in the field and in the process highlighting the: (a) first recognition of rickets or vitamin D deficiency; (b) discovery of the nutritional factor, vitamin D and its chemical structure; (c) elucidation of vitamin D metabolites including the hormonal form, 1,25-dihydroxyvitamin D3; (d) delineation of the vitamin D cellular machinery, functions and vitamin D-related diseases which focused on understanding the mechanism of action of vitamin D in its many target cells.
Search for other papers by Raja Padidela in
Google Scholar
PubMed
Search for other papers by Moira S Cheung in
Google Scholar
PubMed
Search for other papers by Vrinda Saraff in
Google Scholar
PubMed
Search for other papers by Poonam Dharmaraj in
Google Scholar
PubMed
X-linked hypophosphataemia (XLH) is caused by a pathogenic variant in the PHEX gene, which leads to elevated circulating FGF23. High FGF23 causes hypophosphataemia, reduced active vitamin D concentration and clinically manifests as rickets in children and osteomalacia in children and adults. Conventional therapy for XLH includes oral phosphate and active vitamin D analogues but does not specifically treat the underlying pathophysiology of elevated FGF23-induced hypophosphataemia. In addition, adherence to conventional therapy is limited by frequent daily dosing and side effects such as gastrointestinal symptoms, secondary hyperparathyroidism and nephrocalcinosis. Burosumab, a recombinant human IgG1 MAB that binds to and inhibits the activity of FGF23, is administered subcutaneously every 2 weeks. In clinical trials (phase 2 and 3) burosumab was shown to improve phosphate homeostasis that consequently resolves the skeletal/non-skeletal manifestations of XLH. Burosumab was licensed in Europe (February 2018) with the National Institute for Health and Care Excellence, UK approving use within its marketing authorisation in October 2018. In this publication, the British Paediatric and Adolescent Bone Group (BPABG) reviewed current evidence and provide expert recommendations for care pathway and management of XLH with burosumab.
Search for other papers by Shu-Meng Hu in
Google Scholar
PubMed
Search for other papers by Yang-Juan Bai in
Google Scholar
PubMed
Search for other papers by Ya-Mei Li in
Google Scholar
PubMed
Search for other papers by Ye Tao in
Google Scholar
PubMed
Search for other papers by Xian-Ding Wang in
Google Scholar
PubMed
Search for other papers by Tao Lin in
Google Scholar
PubMed
Search for other papers by Lan-Lan Wang in
Google Scholar
PubMed
Search for other papers by Yun-Ying Shi in
Google Scholar
PubMed
Introduction
Tertiary hyperparathyroidism (THPT) and vitamin D deficiency are commonly seen in kidney transplant recipients, which may result in persistently elevated fibroblast growth factor 23 (FGF23) level after transplantation and decreased graft survival. The aim of this study is to evaluate the effect of vitamin D supplementation on THPT, FGF23-alpha Klotho (KLA) axis and cardiovascular complications after transplantation.
Materials and methods
Two hundred nine kidney transplant recipients were included and further divided into treated and untreated groups depending on whether they received vitamin D supplementation. We tracked the state of THPT, bone metabolism and FGF23–KLA axis within 12 months posttransplant and explored the predictors and risk factors for intact FGF23 levels, KLA levels, THPT and cardiovascular complications in recipients.
Results
Vitamin D supplementation significantly improved FGF23 resistance, THPT and high bone turnover status, preserved better graft function and prevented coronary calcification in the treated group compared to the untreated group at month 12. The absence of vitamin D supplementation was an independent risk factor for THPT and a predictor for intact FGF23 and KLA levels at month 12. Age and vitamin D deficiency were independent risk factors for coronary calcification in recipients at month 12.
Conclusion
Vitamin D supplementation effectively improved THPT, FGF23 resistance and bone metabolism, preserved graft function and prevented coronary calcification after transplantation.
Search for other papers by Julie Wulf Christensen in
Google Scholar
PubMed
Search for other papers by Karin Folmer Thøgersen in
Google Scholar
PubMed
Search for other papers by Lars Thorbjørn Jensen in
Google Scholar
PubMed
Department of Clinical Physiology and Nuclear Medicine, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
Search for other papers by Martin Krakauer in
Google Scholar
PubMed
Search for other papers by Bent Kristensen in
Google Scholar
PubMed
Search for other papers by Finn Noe Bennedbæk in
Google Scholar
PubMed
Search for other papers by Bo Zerahn in
Google Scholar
PubMed
Objective
The extent of symptoms due to primary hyperparathyroidism (PHPT) depends on the population being studied. PHPT is mainly discovered incidentally through routine laboratory findings. Less is known about patient-experienced improvement following successful parathyroidectomy. The aim of our study was to assess the changes in the quality of life (QoL) after successful surgery using an SF-36 questionnaire.
Design
This is a prospective cohort study based on questionnaires.
Methods
Forty consecutive patients diagnosed with PHPT were prospectively administered an SF-36 questionnaire before and 6 months after successful parathyroidectomy. A subgroup of 18 patients answered the questionnaire at 1 and 3 months after surgery. Successful surgery was based on biochemistry and pathology reports as confirmed by an endocrinologist. Results of each SF-36 subcategory were compared to the results at baseline in order to detect changes in patient-reported QoL after successful surgery.
Results
There were significant improvements in six of eight SF-36 subcategories: vitality (P = 0.0001), physical functioning (P = 0.04), general health perception (P = 0.004), physical role functioning (P = 0.04), social role functioning (P = 0.004), and mental health perception (P = 0.0001). Changes appeared within a month after surgery with no further significant changes at later time points.
Conclusions
Parathyroidectomy significantly improves QoL as measured by a decrease in SF-36 scores as early as 1 month after successful parathyroidectomy. The SF-36 QoL questionnaire is suitable for monitoring changes in patient well-being after successful parathyroidectomy.