Search Results

You are looking at 1 - 10 of 33 items for :

  • Abstract: Mineral x
  • Abstract: Calcium x
  • Abstract: Menopause x
  • Abstract: Osteo* x
  • Abstract: Skeleton x
  • Abstract: Vitamin D x
  • Bone and Mineral Metabolism x
Clear All Modify Search
Glenville Jones Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada

Search for other papers by Glenville Jones in
Google Scholar
PubMed
Close

Vitamin D has many physiological functions including upregulation of intestinal calcium and phosphate absorption, mobilization of bone resorption, renal reabsorption of calcium as well as actions on a variety of pleiotropic functions. It is believed that many of the hormonal effects of vitamin D involve a 1,25-dihydroxyvitamin D3-vitamin D receptor-mediated transcriptional mechanism involving binding to the cellular chromatin and regulating hundreds of genes in many tissues. This comprehensive historical review provides a unique perspective of the many steps of the discovery of vitamin D and its deficiency disease, rickets, stretching from 1650 until the present. The overview is divided into four distinct historical phases which cover the major developments in the field and in the process highlighting the: (a) first recognition of rickets or vitamin D deficiency; (b) discovery of the nutritional factor, vitamin D and its chemical structure; (c) elucidation of vitamin D metabolites including the hormonal form, 1,25-dihydroxyvitamin D3; (d) delineation of the vitamin D cellular machinery, functions and vitamin D-related diseases which focused on understanding the mechanism of action of vitamin D in its many target cells.

Open access
Marcela Moraes Mendes Department of Nutrition, Faculty of Health Sciences, University of Brasília, Distrito Federal, Brazil
Department of Nutrition, Institute of Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
Department of Nutrition, Faculty of Health and Medical Sciences, University of Surrey, University of Surrey, Guildford, UK

Search for other papers by Marcela Moraes Mendes in
Google Scholar
PubMed
Close
,
Patricia Borges Botelho Department of Nutrition, Faculty of Health Sciences, University of Brasília, Distrito Federal, Brazil

Search for other papers by Patricia Borges Botelho in
Google Scholar
PubMed
Close
, and
Helena Ribeiro Department of Environmental Health, Faculty of Public Health, University of São Paulo, São Paulo, Brazil

Search for other papers by Helena Ribeiro in
Google Scholar
PubMed
Close

Vitamin D enhances calcium absorption and bone mineralisation, promotes maintenance of muscle function, and is crucial for musculoskeletal health. Low vitamin D status triggers secondary hyperparathyroidism, increases bone loss, and leads to muscle weakness. The primary physiologic function of vitamin D and its metabolites is maintaining calcium homeostasis for metabolic functioning, signal transduction, and neuromuscular activity. A considerable amount of human evidence supports the well-recognised contribution of adequate serum 25-hydroxyvitamin D concentrations for bone homeostasis maintenance and prevention and treatment strategies for osteoporosis when combined with adequate calcium intake. This paper aimed to review the literature published, mainly in the last 20 years, on the effect of vitamin D and its supplementation for musculoskeletal health in order to identify the aspects that remain unclear or controversial and therefore require further investigation and debate. There is a clear need for consistent data to establish realistic and meaningful recommendations of vitamin D status that consider different population groups and locations. Moreover, there is still a lack of consensus on thresholds for vitamin D deficiency and optimal status as well as toxicity, optimal intake of vitamin D, vitamin D supplement alone as a strategy to prevent fractures and falls, recommended sun exposure at different latitudes and for different skin pigmentations, and the extra skeletal effects of vitamin D.

Open access
Johanna Öberg Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway

Search for other papers by Johanna Öberg in
Google Scholar
PubMed
Close
,
Rolf Jorde Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway

Search for other papers by Rolf Jorde in
Google Scholar
PubMed
Close
,
Yngve Figenschau Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
Diagnostic Clinic, University Hospital of North Norway, Tromso, Norway

Search for other papers by Yngve Figenschau in
Google Scholar
PubMed
Close
,
Per Medbøe Thorsby Hormone Laboratory, Department of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway

Search for other papers by Per Medbøe Thorsby in
Google Scholar
PubMed
Close
,
Sandra Rinne Dahl Hormone Laboratory, Department of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Aker, Oslo, Norway

Search for other papers by Sandra Rinne Dahl in
Google Scholar
PubMed
Close
,
Anne Winther Division of Neurosciences, Orthopedics and Rehabilitation Services, University Hospital of North Norway, Tromso, Norway

Search for other papers by Anne Winther in
Google Scholar
PubMed
Close
, and
Guri Grimnes Tromso Endocrine Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
Division of Internal Medicine, University Hospital of North Norway, Tromso, Norway

Search for other papers by Guri Grimnes in
Google Scholar
PubMed
Close

Objective

Combined hormonal contraceptive (CHC) use has been associated with higher total 25-hydroxyvitamin D (25(OH)D) levels. Here, we investigate the relation between CHC use and vitamin D metabolism to elucidate its clinical interpretation.

Methods

The cross-sectional Fit Futures 1 included 1038 adolescents. Here, a subgroup of 182 girls with available 25(OH)D, 1,25-dihydroxyvitamin D (1,25(OH)2D), 24,25-dihydroxyvitamin D (24,25(OH)2D), vitamin D-binding protein (DBP) and measured free 25(OH)D levels, in addition to parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), was investigated. Vitamin D metabolites were compared between girls using (CHC+) and not using CHC (CHC−). Further, the predictability of CHC on 25(OH)D levels was assessed in a multiple regression model including lifestyle factors. The ratios 1,25(OH)2D/25(OH)D and 24,25(OH)2D/25(OH)D (vitamin D metabolite ratio (VMR)) in relation to 25(OH)D were presented in scatterplots.

Results

CHC+ (n  = 64; 35% of the girls) had higher 25(OH)D levels (mean ± s.d., 60.3 ± 22.2) nmol/L) than CHC- (n  = 118; 41.8 ± 19.3 nmol/L), P -values <0.01. The differences in 25(OH)D levels between CHC+ and CHC− were attenuated but remained significant after the adjustment of lifestyle factors. CHC+ also had higher levels of 1,25(OH)2D, 24,25(OH)2D, DBP and calcium than CHC−, whereas 1,25(OH)2D/25(OH)D, PTH, FGF23 and albumin were significantly lower. Free 25(OH)D and VMR did not statistically differ, and both ratios appeared similar in relation to 25(OH)D, irrespective of CHC status.

Conclusion

This confirms a clinical impact of CHC on vitamin D levels in adolescents. Our observations are likely due to an increased DBP-concentration, whereas the free 25(OH)D appears unaltered.

Open access
Gabriella Oliveira Lima Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Gabriella Oliveira Lima in
Google Scholar
PubMed
Close
,
Alex Luiz Menezes da Silva Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Alex Luiz Menezes da Silva in
Google Scholar
PubMed
Close
,
Julianne Elba Cunha Azevedo Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Julianne Elba Cunha Azevedo in
Google Scholar
PubMed
Close
,
Chirlene Pinheiro Nascimento Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Chirlene Pinheiro Nascimento in
Google Scholar
PubMed
Close
,
Luana Rodrigues Vieira Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Luana Rodrigues Vieira in
Google Scholar
PubMed
Close
,
Akira Otake Hamoy Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Akira Otake Hamoy in
Google Scholar
PubMed
Close
,
Luan Oliveira Ferreira Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Luan Oliveira Ferreira in
Google Scholar
PubMed
Close
,
Verônica Regina Lobato Oliveira Bahia Multidisciplinary Laboratory of Animal Morphology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Verônica Regina Lobato Oliveira Bahia in
Google Scholar
PubMed
Close
,
Nilton Akio Muto Amazon Bioactive Compounds Valorization Center, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Nilton Akio Muto in
Google Scholar
PubMed
Close
,
Dielly Catrina Favacho Lopes Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Dielly Catrina Favacho Lopes in
Google Scholar
PubMed
Close
, and
Moisés Hamoy Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

Search for other papers by Moisés Hamoy in
Google Scholar
PubMed
Close

Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.

Open access
Jane Fletcher Nutrition Nurses, University Hospitals Birmingham NHS Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, UK
School of Nursing, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, UK

Search for other papers by Jane Fletcher in
Google Scholar
PubMed
Close
,
Emma L Bishop Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK

Search for other papers by Emma L Bishop in
Google Scholar
PubMed
Close
,
Stephanie R Harrison Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, Leeds, UK

Search for other papers by Stephanie R Harrison in
Google Scholar
PubMed
Close
,
Amelia Swift School of Nursing, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, UK

Search for other papers by Amelia Swift in
Google Scholar
PubMed
Close
,
Sheldon C Cooper Gastroenterology Department, University Hospitals Birmingham NHS Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, UK

Search for other papers by Sheldon C Cooper in
Google Scholar
PubMed
Close
,
Sarah K Dimeloe Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK

Search for other papers by Sarah K Dimeloe in
Google Scholar
PubMed
Close
,
Karim Raza Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK

Search for other papers by Karim Raza in
Google Scholar
PubMed
Close
, and
Martin Hewison Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK

Search for other papers by Martin Hewison in
Google Scholar
PubMed
Close

Vitamin D has well-documented effects on calcium homeostasis and bone metabolism but recent studies suggest a much broader role for this secosteroid in human health. Key components of the vitamin D system, notably the vitamin D receptor (VDR) and the vitamin D-activating enzyme (1α-hydroxylase), are present in a wide array of tissues, notably macrophages, dendritic cells and T lymphocytes (T cells) from the immune system. Thus, serum 25-hydroxyvitamin D (25D) can be converted to hormonal 1,25-dihydroxyvitamin D (1,25D) within immune cells, and then interact with VDR and promote transcriptional and epigenomic responses in the same or neighbouring cells. These intracrine and paracrine effects of 1,25D have been shown to drive antibacterial or antiviral innate responses, as well as to attenuate inflammatory T cell adaptive immunity. Beyond these mechanistic observations, association studies have reported the correlation between low serum 25D levels and the risk and severity of human immune disorders including autoimmune diseases such as inflammatory bowel disease, multiple sclerosis, type 1 diabetes and rheumatoid arthritis. The proposed explanation for this is that decreased availability of 25D compromises immune cell synthesis of 1,25D leading to impaired innate immunity and over-exuberant inflammatory adaptive immunity. The aim of the current review is to explore the mechanistic basis for immunomodulatory effects of 25D and 1,25D in greater detail with specific emphasis on how vitamin D-deficiency (low serum levels of 25D) may lead to dysregulation of macrophage, dendritic cell and T cell function and increase the risk of inflammatory autoimmune disease.

Open access
Barbara J Boucher The Blizard Institute, Queen Mary University of London, London, UK

Search for other papers by Barbara J Boucher in
Google Scholar
PubMed
Close

High vitamin D deficiency rates, with rickets and osteomalacia, have been common in South Asians (SAs) arriving in Britain since the 1950s with preventable infant deaths from hypocalcaemic status-epilepticus and cardiomyopathy. Vitamin D deficiency increases common SA disorders (type 2 diabetes and cardiovascular disease), recent trials and non-linear Mendelian randomisation studies having shown deficiency to be causal for both disorders. Ethnic minority, obesity, diabetes and social deprivation are recognised COVID-19 risk factors, but vitamin D deficiency is not, despite convincing mechanistic evidence of it. Adjusting analyses for obesity/ethnicity abolishes vitamin D deficiency in COVID-19 risk prediction, but both factors lower serum 25(OH)D specifically. Social deprivation inadequately explains increased ethnic minority COVID-19 risks. SA vitamin D deficiency remains uncorrected after 70 years, official bodies using ‘education’, ‘assimilation’ and ‘diet’ as ‘proxies’ for ethnic differences and increasing pressures to assimilate. Meanwhile, English rickets was abolished from ~1940 by free ‘welfare foods’ (meat, milk, eggs, cod liver oil), for all pregnant/nursing mothers and young children (<5 years old). Cod liver oil was withdrawn from antenatal clinics in 1994 (for excessive vitamin A teratogenicity), without alternative provision. The take-up of the 2006 ‘Healthy-Start’ scheme of food-vouchers for low-income families with young children (<3 years old) has been poor, being inaccessible and poorly publicised. COVID-19 pandemic advice for UK adults in ‘lockdown’ was ‘400 IU vitamin D/day’, inadequate for correcting the deficiency seen winter/summer at 17.5%/5.9% in White, 38.5%/30% in Black and 57.2%/50.8% in SA people in representative UK Biobank subjects when recruited ~14 years ago and remaining similar in 2018. Vitamin D inadequacy worsens many non-skeletal health risks. Not providing vitamin D for preventing SA rickets and osteomalacia continues to be unacceptable, as deficiency-related health risks increase ethnic health disparities, while abolishing vitamin D deficiency would be easier and more cost-effective than correcting any other factor worsening ethnic minority health in Britain.

Open access
Niek F Dirks Atalmedial Diagnostics Centre, Spaarne Gasthuis, Haarlem, The Netherlands
Department of Clinical Chemistry, Hematology and Immunology, Noordwest Ziekenhuis, Alkmaar, The Netherlands

Search for other papers by Niek F Dirks in
Google Scholar
PubMed
Close
,
Etienne Cavalier Department of Clinical Chemistry, University of Liège, CHU de Liège, Liège, Belgium

Search for other papers by Etienne Cavalier in
Google Scholar
PubMed
Close
, and
Annemieke C Heijboer Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Boelelaan, Amsterdam, The Netherlands
Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam, The Netherlands
Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam, The Netherlands
Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands

Search for other papers by Annemieke C Heijboer in
Google Scholar
PubMed
Close

The measurement of vitamin D metabolites aids in assessing vitamin D status and in diagnosing disorders of calcium homeostasis. Most laboratories measure total 25-hydroxyvitamin D (25(OH)D), while others have taken the extra effort to measure 25(OH)D2 and 25(OH)D3 separately and additional metabolites such as 1,25-dihydroxyvitamin D and 24,25-dihydroxyvitamin D. The aim of this review is to provide an updated overview of the main markers of vitamin D metabolism, define the intended measurands, and discuss the advantages and disadvantages of the two most widely used assays, automated assays and liquid chromatography–tandem mass spectrometry (LC-MS/MS). Whether using the easy and fast automated assays or the more complex LC-MS/MS, one should know the pitfalls of the used technique in order to interpret the measurements. In conclusion, automated assays are unable to accurately measure 25(OH)D in all patient groups, including persons using D2. In these cases, an LC-MS/MS method, when appropriately developed and standardized, produces a more reliable measurement.

Open access
Nancy Martini Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Nancy Martini in
Google Scholar
PubMed
Close
,
Lucas Streckwall Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Lucas Streckwall in
Google Scholar
PubMed
Close
, and
Antonio Desmond McCarthy Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral (LIOMM-UNLP-CICPBA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina

Search for other papers by Antonio Desmond McCarthy in
Google Scholar
PubMed
Close

In post-menopausal women, aged individuals, and patients with diabetes mellitus or chronic renal disease, bone mineral density (BMD) decreases while the vasculature accumulates arterial calcifications (ACs). AC can be found in the tunica intima and/or in the tunica media. Prospective studies have shown that patients with initially low BMD and/or the presence of fragility fractures have at follow-up a significantly increased risk for coronary and cerebrovascular events and for overall cardiovascular mortality. Similarly, patients presenting with abdominal aorta calcifications (an easily quantifiable marker of vascular pathology) show a significant decrease in the BMD (and an increase in the fragility) of bones irrigated by branches of the abdominal aorta, such as the hip and lumbar spine. AC induction is an ectopic tissue biomineralization process promoted by osteogenic transdifferentiation of vascular smooth muscle cells as well as by local and systemic secreted factors. In many cases, the same regulatory molecules modulate bone metabolism but in reverse. Investigation of animal and in vitro models has identified several potential mechanisms for this reciprocal bone–vascular regulation, such as vitamin K and D sufficiency, advanced glycation end-products–RAGE interaction, osteoprotegerin/RANKL/RANK, Fetuin A, oestrogen deficiency and phytooestrogen supplementation, microbiota and its relation to diet, among others. Complete elucidation of these potential mechanisms, as well as their clinical validation via controlled studies, will provide a basis for pharmacological intervention that could simultaneously promote bone and vascular health.

Open access
Rong Xu Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Rong Xu in
Google Scholar
PubMed
Close
,
Difei Lian Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Difei Lian in
Google Scholar
PubMed
Close
,
Yan Xie Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Yan Xie in
Google Scholar
PubMed
Close
,
Lin Mu Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Lin Mu in
Google Scholar
PubMed
Close
,
Yali Wu Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Yali Wu in
Google Scholar
PubMed
Close
,
Zhilei Chen Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Zhilei Chen in
Google Scholar
PubMed
Close
, and
Baoyu Zhang Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital, Capital Medical University, Beijing, China
Beijing Key Laboratory of Diabetes Research and Care, Beijing, China

Search for other papers by Baoyu Zhang in
Google Scholar
PubMed
Close

Osteoporosis (OP) is a systemic bone disease in which bone density and quality decrease and bone fragility increases due to a variety of causes, making it prone to fractures. The development of OP is closely related to oxidative stress. Uric acid (UA) is the end product of purine metabolism in the human body. Extracellular UA has antioxidant properties and is thought to have a protective effect on bone metabolism. However, the process of UA degradation can lead to intracellular oxidative stress, which together with UA-induced inflammatory factors, leads to increased bone destruction. In addition, UA can inhibit vitamin D production, resulting in secondary hyperparathyroidism and further exacerbating UA-associated bone loss. This review summarizes the relationship between serum UA levels and bone mineral density, bone turnover markers, and so on, in the hope of providing new insights into the pathogenesis and treatment of OP.

Open access
Behnaz Abiri Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Behnaz Abiri in
Google Scholar
PubMed
Close
,
Majid Valizadeh Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Majid Valizadeh in
Google Scholar
PubMed
Close
,
Amirhossein Ramezani Ahmadi Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

Search for other papers by Amirhossein Ramezani Ahmadi in
Google Scholar
PubMed
Close
,
Shirin Amini Department of Nutrition, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran

Search for other papers by Shirin Amini in
Google Scholar
PubMed
Close
,
Mohammad Nikoohemmat Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Mohammad Nikoohemmat in
Google Scholar
PubMed
Close
,
Faeze Abbaspour Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Faeze Abbaspour in
Google Scholar
PubMed
Close
, and
Farhad Hosseinpanah Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Search for other papers by Farhad Hosseinpanah in
Google Scholar
PubMed
Close

Objectives

It has not been established whether vitamin D deficiency is associated with anthropometric state; therefore, this systematic review examined the relationship between serum vitamin D levels with anthropometrics and adiposity across different ages.

Methods

Studies that examined vitamin D deficiency with adiposity measures in different age groups were searched in the PubMed, Scopus, Embase, and Google Scholar databases until November 2023. Two investigators independently reviewed titles and abstracts, examined full-text articles, extracted data, and rated the quality in accordance with the Newcastle–Ottawa criteria.

Results

Seventy-two studies, with a total of 59,430 subjects, were included. Of these studies, 27 cross-sectional studies and one longitudinal study (with 25,615 participants) evaluated the possible link between 25(OH)D serum concentrations and anthropometric/adiposity indices in the pediatric population. Forty-two cross-sectional studies and two cohort investigations (with 33,815 participants) investigated the relationship between serum 25(OH)D levels and adiposity measures in adults and/or the elderly population. There is evidence supporting links between vitamin D deficiency and obesity, and revealed an inverse association between vitamin D and adiposity indicators, specifically in female subjects. However, the effects of several confounding factors should also be considered.

Conclusion

Most published studies, most of which were cross-sectional, reported a negative association between vitamin D and female adiposity indicators. Therefore, serum vitamin D levels should be monitored in overweight/obese individuals.

Open access