Search Results

You are looking at 81 - 90 of 100 items for

  • Abstract: Autoimmune x
  • Abstract: Inflammation x
  • Abstract: Late effects of cancer treatment x
Clear All Modify Search
Henrik H Thomsen Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Henrik H Thomsen in
Google Scholar
PubMed
Close
,
Holger J Møller Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Holger J Møller in
Google Scholar
PubMed
Close
,
Christian Trolle Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Christian Trolle in
Google Scholar
PubMed
Close
,
Kristian A Groth Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Kristian A Groth in
Google Scholar
PubMed
Close
,
Anne Skakkebæk Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Anne Skakkebæk in
Google Scholar
PubMed
Close
,
Anders Bojesen Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Anders Bojesen in
Google Scholar
PubMed
Close
,
Christian Høst Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Christian Høst in
Google Scholar
PubMed
Close
, and
Claus H Gravholt Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
Medical Research Laboratories, Departments of Clinical Biochemistry, Molecular Medicine, Department of Clinical Genetics, Department of Endocrinology and Internal Medicine, Clinical Institute, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark

Search for other papers by Claus H Gravholt in
Google Scholar
PubMed
Close

Soluble CD163 (sCD163) is a novel marker linked to states of low-grade inflammation such as diabetes, obesity, liver disease, and atherosclerosis, all prevalent in subjects with Turner syndrome (TS) and Klinefelter syndrome (KS). We aimed to assess the levels of sCD163 and the regulation of sCD163 in regards to treatment with sex hormone therapy in males with and without KS and females with and without TS. Males with KS (n=70) and age-matched controls (n=71) participating in a cross-sectional study and 12 healthy males from an experimental hypogonadism study. Females with TS (n=8) and healthy age-matched controls (n=8) participating in a randomized crossover trial. The intervention comprised of treatment with sex steroids. Males with KS had higher levels of sCD163 compared with controls (1.75 (0.47–6.90) and 1.36 (0.77–3.11) respectively, P<0.001) and the levels correlated to plasma testosterone (r=−0.31, P<0.01), BMI (r=0.42, P<0.001), and homeostasis model of assessment insulin resistance (r=0.46, P<0.001). Treatment with testosterone did not significantly lower sCD163. Females with TS not receiving hormone replacement therapy (HRT) had higher levels of sCD163 than those of their age-matched healthy controls (1.38±0.44 vs 0.91±0.40, P=0.04). HRT and oral contraceptive therapy decreased sCD163 in TS by 22% (1.07±0.30) and in controls by 39% (0.55±0.36), with significance in both groups (P=0.01 and P=0.04). We conclude that levels of sCD163 correlate with endogenous testosterone in KS and are higher in KS subjects compared with controls, but treatment did not significantly lower levels. Both endogenous and exogenous estradiol in TS was associated with lower levels of sCD163.

Open access
Chun-feng Lu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Chun-feng Lu in
Google Scholar
PubMed
Close
,
Xiao-qin Ge Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xiao-qin Ge in
Google Scholar
PubMed
Close
,
Yan Wang Department of Geriatrics, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Yan Wang in
Google Scholar
PubMed
Close
,
Jian-bin Su Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Jian-bin Su in
Google Scholar
PubMed
Close
,
Xue-qin Wang Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Xue-qin Wang in
Google Scholar
PubMed
Close
,
Dong-mei Zhang Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Dong-mei Zhang in
Google Scholar
PubMed
Close
,
Feng Xu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Feng Xu in
Google Scholar
PubMed
Close
,
Wang-shu Liu Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Search for other papers by Wang-shu Liu in
Google Scholar
PubMed
Close
, and
Min Su Department of Endocrinology, Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, China

Search for other papers by Min Su in
Google Scholar
PubMed
Close

Background

Prolonged heart rate-corrected QT (QTc) interval may reflect poor prognosis of patients with type 2 diabetes (T2D). Serum adenosine deaminase (ADA) levels are related to hyperglycemia, insulin resistance (IR) and inflammation, which may participate in diabetic complications. We investigated the association of serum ADA levels with prolonged QTc interval in a large-scale sample of patients with T2D.

Methods

In this cross-sectional study, a total of 492 patients with T2D were recruited. Serum ADA levels were determined by venous blood during fasting. QTc interval was estimated from resting 12-lead ECGs, and prolonged QTc interval was defined as QTc > 440 ms.

Results

In this study, the prevalence of prolonged QTc interval was 22.8%. Serum ADA levels were positively associated with QTc interval (r = 0.324, P < 0.0001). The proportion of participants with prolonged QTc interval increased significantly from 9.2% in the first tertile (T1) to 24.7% in the second tertile (T2) and 39.0% in the third tertile (T3) of ADA (P for trend < 0.001). After adjusting for other possible risk factors by multiple linear regression analysis, serum ADA level was still significantly associated with QTc interval (β = 0.217, t = 3.400, P < 0.01). Multivariate logistic regression analysis showed that female (OR 5.084, CI 2.379–10.864, P < 0.001), insulin-sensitizers treatment (OR 4.229, CI 1.290–13.860, P = 0.017) and ADA (OR 1.212, CI 1.094–1.343, P < 0.001) were independent contributors to prolonged QTc interval.

Conclusions

Serum ADA levels were independently associated with prolonged QTc interval in patients with T2D.

Open access
Estíbaliz Castillero
Search for other papers by Estíbaliz Castillero in
Google Scholar
PubMed
Close
,
Ana Isabel Martín
Search for other papers by Ana Isabel Martín in
Google Scholar
PubMed
Close
,
Maria Paz Nieto-Bona Department of Physiology, Department of Histology, Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain

Search for other papers by Maria Paz Nieto-Bona in
Google Scholar
PubMed
Close
,
Carmen Fernández-Galaz
Search for other papers by Carmen Fernández-Galaz in
Google Scholar
PubMed
Close
,
María López-Menduiña
Search for other papers by María López-Menduiña in
Google Scholar
PubMed
Close
,
María Ángeles Villanúa
Search for other papers by María Ángeles Villanúa in
Google Scholar
PubMed
Close
, and
Asunción López-Calderón
Search for other papers by Asunción López-Calderón in
Google Scholar
PubMed
Close

Chronic inflammation induces skeletal muscle wasting and cachexia. In arthritic rats, fenofibrate, a peroxisome proliferator-activated receptor α (PPARα (PPARA)) agonist, reduces wasting of gastrocnemius, a predominantly glycolytic muscle, by decreasing atrogenes and myostatin. Considering that fenofibrate increases fatty acid oxidation, the aim of this study was to elucidate whether fenofibrate is able to prevent the effect of arthritis on serum adipokines and on soleus, a type I muscle in which oxidative metabolism is the dominant source of energy. Arthritis was induced by injection of Freund's adjuvant. Four days after the injection, control and arthritic rats were gavaged daily with fenofibrate (300 mg/kg bw) or vehicle over 12 days. Arthritis decreased serum leptin, adiponectin, and insulin (P<0.01) but not resistin levels. In arthritic rats, fenofibrate administration increased serum concentrations of leptin and adiponectin. Arthritis decreased soleus weight, cross-sectional area, fiber size, and its Ppar α mRNA expression. In arthritic rats, fenofibrate increased soleus weight, fiber size, and Ppar α expression and prevented the increase in Murf1 mRNA. Fenofibrate decreased myostatin, whereas it increased MyoD (Myod1) and myogenin expressions in the soleus of control and arthritic rats. These data suggest that in oxidative muscle, fenofibrate treatment is able to prevent arthritis-induced muscle wasting by decreasing Murf1 and myostatin expression and also by increasing the myogenic regulatory factors, MyoD and myogenin. Taking into account the beneficial action of adiponectin on muscle wasting and the correlation between adiponectin and soleus mass, part of the anticachectic action of fenofibrate may be mediated through stimulation of adiponectin secretion.

Open access
Helle Keinicke Insulin and Device Trial Operations, Novo Nordisk A/S, Søborg, Denmark

Search for other papers by Helle Keinicke in
Google Scholar
PubMed
Close
,
Gao Sun Pharmacology and Histopathology, Novo Nordisk A/S, China

Search for other papers by Gao Sun in
Google Scholar
PubMed
Close
,
Caroline M Junker Mentzel Department of Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark

Search for other papers by Caroline M Junker Mentzel in
Google Scholar
PubMed
Close
,
Merete Fredholm Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark

Search for other papers by Merete Fredholm in
Google Scholar
PubMed
Close
,
Linu Mary John Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark

Search for other papers by Linu Mary John in
Google Scholar
PubMed
Close
,
Birgitte Andersen Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark

Search for other papers by Birgitte Andersen in
Google Scholar
PubMed
Close
,
Kirsten Raun Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark

Search for other papers by Kirsten Raun in
Google Scholar
PubMed
Close
, and
Marina Kjaergaard Global Obesity and Liver Disease Research, Novo Nordisk A/S, Måløv, Denmark

Search for other papers by Marina Kjaergaard in
Google Scholar
PubMed
Close

The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased dramatically worldwide and, subsequently, also the risk of developing non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis and cancer. Today, weight loss is the only available treatment, but administration of fibroblast growth factor 21 (FGF21) analogues have, in addition to weight loss, shown improvements on liver metabolic health but the mechanisms behind are not entirely clear. The aim of this study was to investigate the hepatic metabolic profile in response to FGF21 treatment. Diet-induced obese (DIO) mice were treated with s.c. administration of FGF21 or subjected to caloric restriction by switching from high fat diet (HFD) to chow to induce 20% weight loss and changes were compared to vehicle dosed DIO mice. Cumulative caloric intake was reduced by chow, while no differences were observed between FGF21 and vehicle dosed mice. The body weight loss in both treatment groups was associated with reduced body fat mass and hepatic triglycerides (TG), while hepatic cholesterol was slightly decreased by chow. Liver glycogen was decreased by FGF21 and increased by chow. The hepatic gene expression profiles suggest that FGF21 increased uptake of fatty acids and lipoproteins, channeled TGs toward the production of cholesterol and bile acid, reduced lipogenesis and increased hepatic glucose output. Furthermore, FGF21 appeared to reduce inflammation and regulate hepatic leptin receptor-a expression. In conclusion, FGF21 affected several metabolic pathways to reduce hepatic steatosis and improve hepatic health and markedly more genes than diet restriction (61 vs 16 out of 89 investigated genes).

Open access
Ermina Bach Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Ermina Bach in
Google Scholar
PubMed
Close
,
Niels Møller Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Niels Møller in
Google Scholar
PubMed
Close
,
Jens Otto L Jørgensen Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Jens Otto L Jørgensen in
Google Scholar
PubMed
Close
,
Mads Buhl The Neonatal Intensive Care Unit, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Mads Buhl in
Google Scholar
PubMed
Close
, and
Holger Jon Møller Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark

Search for other papers by Holger Jon Møller in
Google Scholar
PubMed
Close

Aims/hypothesis

The macrophage-specific glycoprotein sCD163 has emerged as a biomarker of low-grade inflammation in the metabolic syndrome and related disorders. High sCD163 levels are seen in acute sepsis as a result of direct lipopolysaccharide-mediated shedding of the protein from macrophage surfaces including Kupffer cells. The aim of this study was to investigate if low-grade endotoxinemia in human subjects results in increasing levels of sCD163 in a cortisol-dependent manner.

Methods

We studied eight male hypopituitary patients and eight age- and gender-matched healthy controls during intravenous low-dose LPS or placebo infusion administered continuously over 360 min. Furthermore, we studied eight healthy volunteers with bilateral femoral vein and artery catheters during a 360-min infusion with saline and low-dose LPS in each leg respectively.

Results:

Systemic low-grade endotoxinemia resulted in a gradual increase in sCD163 from 1.65 ± 0.51 mg/L (placebo) to 1.92 ± 0.46 mg/L (LPS) at 220 min, P = 0.005 and from 1.66 ± 0.42 mg/L (placebo) to 2.19 ± 0.56 mg/L (LPS) at 340 min, P = 0.006. A very similar response was observed in hypopituitary patients: from 1.59 ± 0.53 mg/L (placebo) to 1.83 ± 0.45 mg/L (LPS) at 220 min, P = 0.021 and from 1.52 ± 0.53 mg/L (placebo) to 2.03 ± 0.44 mg/L (LPS) at 340 min, P < 0.001. As opposed to systemic treatment, continuous femoral artery infusion did not result in increased sCD163.

Conclusion:

Systemic low-grade endotoxinemia resulted in increased sCD163 to levels seen in the metabolic syndrome in both controls and hypopituitary patients. This suggests a direct and cortisol-independent effect of LPS on the shedding of sCD163. We observed no effect of local endotoxinemia on levels of serum sCD163.

Open access
Janko Sattler Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Department of Rheumatology and Clinical Immunology, Charité-University Medicine, Berlin, Germany

Search for other papers by Janko Sattler in
Google Scholar
PubMed
Close
,
Jinwen Tu Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia

Search for other papers by Jinwen Tu in
Google Scholar
PubMed
Close
,
Shihani Stoner Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia

Search for other papers by Shihani Stoner in
Google Scholar
PubMed
Close
,
Jingbao Li Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, China

Search for other papers by Jingbao Li in
Google Scholar
PubMed
Close
,
Frank Buttgereit Department of Rheumatology and Clinical Immunology, Charité-University Medicine, Berlin, Germany

Search for other papers by Frank Buttgereit in
Google Scholar
PubMed
Close
,
Markus J Seibel Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia
Department of Endocrinology & Metabolism, Concord Hospital, Sydney, Australia

Search for other papers by Markus J Seibel in
Google Scholar
PubMed
Close
,
Hong Zhou Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia

Search for other papers by Hong Zhou in
Google Scholar
PubMed
Close
, and
Mark S Cooper Adrenal Steroid Group, ANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
Concord Clinical School, The University of Sydney, Sydney, Australia
Department of Endocrinology & Metabolism, Concord Hospital, Sydney, Australia

Search for other papers by Mark S Cooper in
Google Scholar
PubMed
Close

Patients with chronic immune-mediated arthritis exhibit abnormal hypothalamo-pituitary-adrenal (HPA) axis activity. The basis for this abnormality is not known. Immune-mediated arthritis is associated with increased extra-adrenal synthesis of active glucocorticoids by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. 11β-HSD1 is expressed in the central nervous system, including regions involved in HPA axis regulation. We examined whether altered 11β-HSD1 expression within these regions contributes to HPA axis dysregulation during arthritis. The expression of 11β-HSD1, and other components of glucocorticoid signaling, were examined in various brain regions and the pituitary gland of mice with experimentally induced arthritis. Two arthritis protocols were employed: The K/BxN spontaneous arthritis model for chronic arthritis and the K/BxN serum transfer arthritis model for acute arthritis. 11β-HSD1 mRNA (Hsd11b1) was expressed in the hippocampus, hypothalamus, cortex, cerebellum and pituitary gland. Hypothalamic Hsd11b1 expression did not change in response to arthritis in either model. Pituitary Hsd11b1 expression was however significantly increased in both chronic and acute arthritis models. Hippocampal Hsd11b1 was decreased in acute but not chronic arthritis. Chronic, but not acute, arthritis was associated with a reduction in hypothalamic corticotropin-releasing hormone and arginine vasopressin expression. In both models, serum adrenocorticotropic hormone and corticosterone levels were no different from non-inflammatory controls. These findings demonstrate inflammation-dependent regulation of Hsd11b1 expression in the pituitary gland and hippocampus. The upregulation of 11β-HSD1 expression in the pituitary during both chronic and acute arthritis, and thus, an increase in glucocorticoid negative feedback, could contribute to the abnormalities in HPA axis activity seen in immune-mediated arthritis.

Open access
Marianna Martino Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Ancona, Italy

Search for other papers by Marianna Martino in
Google Scholar
PubMed
Close
,
Paolo Falcioni Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Ancona, Italy

Search for other papers by Paolo Falcioni in
Google Scholar
PubMed
Close
,
Giulia Giancola Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Ancona, Italy

Search for other papers by Giulia Giancola in
Google Scholar
PubMed
Close
,
Alessandro Ciarloni Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Ancona, Italy

Search for other papers by Alessandro Ciarloni in
Google Scholar
PubMed
Close
,
Gianmaria Salvio Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Ancona, Italy

Search for other papers by Gianmaria Salvio in
Google Scholar
PubMed
Close
,
Francesca Silvetti Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Ancona, Italy

Search for other papers by Francesca Silvetti in
Google Scholar
PubMed
Close
,
Augusto Taccaliti Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Ancona, Italy

Search for other papers by Augusto Taccaliti in
Google Scholar
PubMed
Close
, and
Giorgio Arnaldi Division of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, Ancona, Italy

Search for other papers by Giorgio Arnaldi in
Google Scholar
PubMed
Close

Objective

Dysnatremia is common in hospitalized patients, often worsening the prognosis in pneumopathies and critical illnesses. Information on coronavirus disease-19 (COVID-19)-related hyponatremia is partially conflicting, whereas data on hypernatremia in this context are scarce. We assessed, in a cohort of COVID-19 inpatients: the prevalence of sodium alterations at admission and throughout their hospitalization; their association with inflammation/organ damage indexes; their short-term prognostic impact.

Study design and methods

117 patients (81 males, 64 ± 13 years) hospitalized for COVID-19 between 1 March and 30 April 2020 were retrospectively followed-up for their first 21 days of stay by collecting all serum sodium measurements, basal CRP and serum lactate levels, maximum IL-6 and information on care setting, required ventilation, length of hospitalization, in-hospital death.

Results

At admission, 26.5% patients had hyponatremia, and 6.8% had hypernatremia. During their hospitalization, 13.7% patients experienced both disorders ('mixed dysnatremia'). Lower sodium levels at admission were correlated with higher C reactive protein (CRP) (P = 0.039) and serum lactate levels (P = 0.019), but not interleukin-6 (IL-6). Hypernatremia and a wider sodium variability were associated with maximum required ventilation, need for ICU assistance and duration of the hospitalization. Mean estimated time to Intensive Care Unit (ICU) admission was 20 days shorter in patients exposed to sodium alterations at any time of their hospital course (log-rank test P = 0.032).

Conclusions

Sodium alterations frequently affect hospitalized COVID-19 patients. Hyponatremia could indicate pulmonary involvement, whereas hypernatremia is associated to prolonged hospitalization and the need for intensive care/mechanical ventilation, particularly when resulting from prior hyponatremia. Optimizing in-hospital sodium balance is crucial to improve patients’ prognosis.

Open access
Natalio García-Honduvilla Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
University Center of Defense of Madrid (CUD-ACD), Madrid, Spain

Search for other papers by Natalio García-Honduvilla in
Google Scholar
PubMed
Close
,
Alberto Cifuentes Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain

Search for other papers by Alberto Cifuentes in
Google Scholar
PubMed
Close
,
Miguel A Ortega Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain

Search for other papers by Miguel A Ortega in
Google Scholar
PubMed
Close
,
Marta Pastor Biopraxis Research AIE, Álava, Spain

Search for other papers by Marta Pastor in
Google Scholar
PubMed
Close
,
Garazi Gainza Biopraxis Research AIE, Álava, Spain

Search for other papers by Garazi Gainza in
Google Scholar
PubMed
Close
,
Eusebio Gainza Biopraxis Research AIE, Álava, Spain

Search for other papers by Eusebio Gainza in
Google Scholar
PubMed
Close
,
Julia Buján Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
University Center of Defense of Madrid (CUD-ACD), Madrid, Spain

Search for other papers by Julia Buján in
Google Scholar
PubMed
Close
, and
Melchor Álvarez-Mon Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
University Center of Defense of Madrid (CUD-ACD), Madrid, Spain
Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain

Search for other papers by Melchor Álvarez-Mon in
Google Scholar
PubMed
Close

Wound healing is a complex process that can be severely impaired due to pathological situations such as diabetes mellitus. Diabetic foot ulcers are a common complication of this pathology and are characterized by an excessive inflammatory response. In this work, the effects of local treatment with recombinant human epidermal growth factor (rhEGF) were studied using a full-thickness wound healing model in streptozotocin-induced diabetic rats. Wound healing process was assessed with different concentrations of rhEGF (0.1, 0.5, 2.0 and 8.0 µg/mL), placebo and both diabetic and non-diabetic controls (n = 53). The macroscopic healing observed in treated diabetic rats was affected by rhEGF concentration. Histologically, we also observed an improvement in the epithelialization, granulation tissue formation and maturation in treated groups, finding again the best response at doses of 0.5 and 2.0 µg/mL. Afterwards, the tissue immune response over time was assessed in diabetic rats using the most effective concentrations of rhEGF (0.5 and 2.0 µg/mL), compared to controls. The presence of macrophages, CD4+ T lymphocytes and CD8+ T lymphocytes, in the reparative tissue was quantified, and cytokine expression was measured by quantitative real-time PCR. rhEGF treatment caused a reduction in the number of infiltrating macrophages in the healing tissue of diabetic, as well as diminished activation of these leukocytes. These findings show that local administration of rhEGF improves the healing process of excisional wounds and the quality of the neoformed tissue in a dose-dependent manner. Besides, this treatment reduces the local inflammation associated with diabetic healing, indicating immuno-modulatory properties.

Open access
Nikolaj Rittig Department of Internal Medicine and Endocrinology (MEA) and Medical Research Laboratory, Aarhus University Hospital, Aarhus C, Denmark

Search for other papers by Nikolaj Rittig in
Google Scholar
PubMed
Close
,
Mads Svart Department of Internal Medicine and Endocrinology (MEA) and Medical Research Laboratory, Aarhus University Hospital, Aarhus C, Denmark

Search for other papers by Mads Svart in
Google Scholar
PubMed
Close
,
Niels Jessen Research Laboratory for Biochemical Pathology, Institute for Clinical Medicine, Aarhus University Hospital, Aarhus C, Denmark

Search for other papers by Niels Jessen in
Google Scholar
PubMed
Close
,
Niels Møller Department of Internal Medicine and Endocrinology (MEA) and Medical Research Laboratory, Aarhus University Hospital, Aarhus C, Denmark

Search for other papers by Niels Møller in
Google Scholar
PubMed
Close
,
Holger J Møller Department of Clinical Biochemistry Aarhus University Hospital, Aarhus C, Denmark

Search for other papers by Holger J Møller in
Google Scholar
PubMed
Close
, and
Henning Grønbæk Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus C, Denmark

Search for other papers by Henning Grønbæk in
Google Scholar
PubMed
Close

Background

Macrophage activation determined by levels of soluble sCD163 is associated with obesity, insulin resistance, diabetes mellitus type 2 (DM2) and non-alcoholic fatty liver disease (NAFLD). This suggests that macrophage activation is involved in the pathogenesis of conditions is characterised by adaptions in the lipid metabolism. Since sCD163 is shed to serum by inflammatory signals including lipopolysaccharides (LPS, endotoxin), we investigated sCD163 and correlations with lipid metabolism following LPS exposure.

Methods

Eight healthy male subjects were investigated on two separate occasions: (i) following an LPS exposure and (ii) following saline exposure. Each study day consisted of a four-hour non-insulin-stimulated period followed by a two-hour hyperinsulinemic euglycemic clamp period. A 3H-palmitate tracer was used to calculate the rate of appearance (Rapalmitate). Blood samples were consecutively obtained throughout each study day. Abdominal subcutaneous adipose tissue was obtained for western blotting.

Results

We observed a significant two-fold increase in plasma sCD163 levels following LPS exposure (P < 0.001), and sCD163 concentrations correlated positively with the plasma concentration of free fatty acids, Rapalmitate, lipid oxidation rates and phosphorylation of the hormone-sensitive lipase at serine 660 in adipose tissue (P < 0.05, all). Furthermore, sCD163 concentrations correlated positively with plasma concentrations of cortisol, glucagon, tumour necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10 (P < 0.05, all).

Conclusion

We observed a strong correlation between sCD163 and stimulation of lipolysis and fat oxidation following LPS exposure. These findings support preexisting theory that inflammation and macrophage activation play a significant role in lipid metabolic adaptions under conditions such as obesity, DM2 and NAFLD.

Open access
Zhaoxiang Liu Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China

Search for other papers by Zhaoxiang Liu in
Google Scholar
PubMed
Close
,
Mingqiang Zhang Department of Respiratory and Critical Care Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China

Search for other papers by Mingqiang Zhang in
Google Scholar
PubMed
Close
,
Xiaohu Shi Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China

Search for other papers by Xiaohu Shi in
Google Scholar
PubMed
Close
,
Wenhui Zhao Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China

Search for other papers by Wenhui Zhao in
Google Scholar
PubMed
Close
,
Chenxiang Cao Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China

Search for other papers by Chenxiang Cao in
Google Scholar
PubMed
Close
,
Lixia Jin Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China

Search for other papers by Lixia Jin in
Google Scholar
PubMed
Close
,
Yanlei Wang Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China

Search for other papers by Yanlei Wang in
Google Scholar
PubMed
Close
, and
Jianzhong Xiao Department of Endocrinology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China

Search for other papers by Jianzhong Xiao in
Google Scholar
PubMed
Close

Objectives

The activation of immune cells plays a significant role in the progression of type 2 diabetes. This study aimed to investigate the potential role of myeloid-derived suppressor cells (MDSCs) and T-regulatory cells (Tregs) in type 2 diabetes.

Methods

A total of 61 patients diagnosed with type 2 diabetes were recruited. Clinical characteristics were reviewed and peripheral blood samples were collected. We calculated the percentage of different cells. Frequencies of MDSC subsets refered to the percentage of G-MDSCs (CD15+CD33+CD11b+CD14-HLA-DR-/low) in CD45 positive cells and the percentage of M-MDSCs (CD14+CD15-CD11b+CD33+HLA-DR-/low) in lymphocytes plus monocytes.

Results

Frequencies of programmed cell death ligand 1-positive granulocytic MDSCs (PD-L1+ G-MDSCs), programmed cell death ligand 2-positive monocytic MDSCs (PD-L2+ M-MDSCs), PD-L2+ G-MDSC, and programmed cell death protein 1-positive Tregs (PD-1+Tregs) were decreased in patients with type 2 diabetes. The frequency of PD-1+ Tregs was positively related to PD-L2+ M-MDSCs (r= 0.357, P = 0.009) and negatively related to HbA1c (r = -0.265, P = 0.042), fasting insulin level (r = −0.260, P = 0.047), and waist circumference (r = −0.373, P = 0.005).

Conclusions

Decreased PD-L2+ M-MDSCs and PD-1+ Tregs may promote effector T cell activation, leading to chronic low-grade inflammation in type 2 diabetes. These findings highlight the contribution of MDSCs and Tregs to the immunopathogenesis of type 2 diabetes and suggest their potential as targets for new therapeutic approaches.

Open access