Search Results
You are looking at 31 - 40 of 100 items for
- Abstract: Autoimmune x
- Abstract: Inflammation x
- Abstract: Late effects of cancer treatment x
Search for other papers by Jia Liu in
Google Scholar
PubMed
Search for other papers by Min Liu in
Google Scholar
PubMed
Search for other papers by Zhe Chen in
Google Scholar
PubMed
Search for other papers by Yumei Jia in
Google Scholar
PubMed
Search for other papers by Guang Wang in
Google Scholar
PubMed
Objective
Autoimmune thyroiditis (AIT) is the most common autoimmune thyroid disease. Longitudinal relaxation time mapping (T1-mapping) measured by MRI is a new technique for assessing interstitial fibrosis of some organs, such as heart and liver. This study aimed to evaluate the relationship between T1-mapping value and thyroid function and determine the usefulness of T1-mapping in identifying thyroid destruction in AIT patients.
Methods
This case–control study recruited 57 drug-naïve AIT patients and 17 healthy controls. All participants were given thyroid MRI, and T1-mapping values were measured using a modified look-locker inversion-recovery sequence.
Results
AIT patients had significantly higher thyroid T1-mapping values than the healthy controls (1.077 ± 177 vs 778 ± 82.9 ms; P < 0.01). A significant increase in thyroid T1-mapping values was presented along with the increased severity of thyroid dysfunction (P < 0.01). Correlation analyses showed that increased thyroid T1-mapping values were associated with higher TSH and lower FT3 and FT4 levels (TSH: r = 0.75; FT3: r = −0.47; FT4: r = −0.72; all P < 0.01). Receiver-operating characteristic curve analysis revealed a high diagnostic value of T1-mapping values for the degree of thyroid destruction (area under the curve was 0.95, 95% CI: 0.90–0.99, P < 0.01).
Conclusions
AIT patients have higher thyroid T1-mapping values than the healthy controls, and the T1-mapping values increased with the progression of thyroid dysfunction. Thyroid T1-mapping value might be a new index to quantitatively evaluate the degree of thyroid destruction in AIT patients.
Search for other papers by Elin Kahlert in
Google Scholar
PubMed
Endokrinologikum Goettingen, Goettingen, Germany
Search for other papers by Martina Blaschke in
Google Scholar
PubMed
Search for other papers by Knut Brockmann in
Google Scholar
PubMed
Search for other papers by Clemens Freiberg in
Google Scholar
PubMed
Search for other papers by Onno E Janssen in
Google Scholar
PubMed
Search for other papers by Nikolaus Stahnke in
Google Scholar
PubMed
Search for other papers by Domenika Strik in
Google Scholar
PubMed
Search for other papers by Martin Merkel in
Google Scholar
PubMed
Search for other papers by Alexander Mann in
Google Scholar
PubMed
Search for other papers by Klaus-Peter Liesenkötter in
Google Scholar
PubMed
Endokrinologikum Goettingen, Goettingen, Germany
Search for other papers by Heide Siggelkow in
Google Scholar
PubMed
Objective
Turner syndrome (TS) is characterized by the complete or partial loss of the second sex chromosome and associated with a wide range of clinical manifestations. We aimed to assess the medical care of adult patients with TS in Germany.
Design
Retrospective multicenter observational study.
Methods
Data were collected from medical records of 258 women with TS treated between 2001 and 2017 in five non-university endocrinologic centers in Germany.
Results
Mean age was 29.8 ± 11.6 years, mean height 152 ± 7.7 cm, and mean BMI 26.6 ± 6.3 kg/m2. The karyotype was known in 50% of patients. Information on cholesterol state, liver enzymes, and thyroid status was available in 81–98% of women with TS; autoimmune thyroiditis was diagnosed in 37%. Echocardiography was performed in 42% and cardiac MRI in 8.5%, resulting in a diagnosis of cardiovascular disorder in 28%. Data on growth hormone therapy were available for 40 patients (15%) and data concerning menarche in 157 patients (61%).
Conclusion
In 258 women with TS, retrospective analysis of healthcare data indicated that medical management was focused on endocrine manifestations. Further significant clinical features including cardiovascular disease, renal malformation, liver involvement, autoimmune diseases, hearing loss, and osteoporosis were only marginally if at all considered. Based on this evaluation and in accordance with recent guidelines, we compiled a documentation form facilitating the transition from pediatric to adult care and further medical management of TS patients. The foundation of Turner Centers in March 2019 will improve the treatment of TS women in Germany.
Search for other papers by John E M Midgley in
Google Scholar
PubMed
Search for other papers by Rolf Larisch in
Google Scholar
PubMed
North Lakes Clinical, Department of Nuclear Medicine, Medical Department I, Ruhr Center for Rare Diseases (CeSER), 20 Wheatley Avenue, Ilkley LS29 8PT, UK
Search for other papers by Johannes W Dietrich in
Google Scholar
PubMed
Search for other papers by Rudolf Hoermann in
Google Scholar
PubMed
Several influences modulate biochemical responses to a weight-adjusted levothyroxine (l-T4) replacement dose. We conducted a secondary analysis of the relationship of l-T4 dose to TSH and free T3 (FT3), using a prospective observational study examining the interacting equilibria between thyroid parameters. We studied 353 patients on steady-state l-T4 replacement for autoimmune thyroiditis or after surgery for malignant or benign thyroid disease. Peripheral deiodinase activity was calculated as a measure of T4–T3 conversion efficiency. In euthyroid subjects, the median l-T4 dose was 1.3 μg/kg per day (interquartile range (IQR) 0.94,1.60). The dose was independently associated with gender, age, aetiology and deiodinase activity (all P<0.001). Comparable FT3 levels required higher l-T4 doses in the carcinoma group (n=143), even after adjusting for different TSH levels. Euthyroid athyreotic thyroid carcinoma patients (n=50) received 1.57 μg/kg per day l-T4 (IQR 1.40, 1.69), compared to 1.19 μg/kg per day (0.85,1.47) in autoimmune thyroiditis (P<0.01, n=76) and 1.08 μg/kg per day (0.82, 1.44) in patients operated on for benign disease (P< 0.01, n=80). Stratifying patients by deiodinase activity categories of <23, 23–29 and >29 nmol/s revealed an increasing FT3–FT4 dissociation; the poorest converters showed the lowest FT3 levels in spite of the highest dose and circulating FT4 (P<0.001). An l-T4-related FT3–TSH disjoint was also apparent; some patients with fully suppressed TSH failed to raise FT3 above the median level. These findings imply that thyroid hormone conversion efficiency is an important modulator of the biochemical response to l-T4; FT3 measurement may be an additional treatment target; and l-T4 dose escalation may have limited success to raise FT3 appropriately in some cases.
Search for other papers by Yun Cai in
Google Scholar
PubMed
Search for other papers by Jieni Yan in
Google Scholar
PubMed
Search for other papers by Yong Gu in
Google Scholar
PubMed
Search for other papers by Heng Chen in
Google Scholar
PubMed
Search for other papers by Yang Chen in
Google Scholar
PubMed
Search for other papers by Xinyu Xu in
Google Scholar
PubMed
Search for other papers by Mei Zhang in
Google Scholar
PubMed
Search for other papers by Liping Yu in
Google Scholar
PubMed
Search for other papers by Xuqin Zheng in
Google Scholar
PubMed
Search for other papers by Tao Yang in
Google Scholar
PubMed
Objective
The most common coexisting organ-specific autoimmune disease in patients with type 1 diabetes mellitus (T1DM) is autoimmune thyroid disease (AITD). However, there have been few clinical reports based on a large population about the prevalence of zinc transporter 8 autoantibody (ZnT8A) and other islet autoantibodies in AITD patients. We aimed to explore the presence of islet autoantibodies, ZnT8A, glutamic acid decarboxylase autoantibodies (GADA) and insulinoma-associated antigen 2 autoantibodies (IA-2A) compared with thyroid autoantibodies, thyroid peroxidase autoantibodies (TPOAb) and thyroglobulin autoantibodies (TGAb) and thyrotropin receptor autoantibodies (TRAb) in patients with Graves’ disease (GD), Hashimoto’s thyroiditis (HT) and T1DM patients with AITD.
Methods
Totally, 389 patients with GD, 334 patients with HT, 108 T1DM patients with AITD and 115 healthy controls (HC) were recruited in the study. Islet autoantibodies (ZnT8A, GADA and IA-2A) were detected by radioligand binding assay. Thyroid autoantibodies, TPOAb and TGAb were detected by chemiluminescence assay, and TRAb was detected by RIA.
Results
The prevalence of ZnT8A, GADA and IA-2A was higher in GD and HT patients than that of HC (ZnT8A: GD 8.48%, HT 10.8% vs HC 1.74%; GADA: GD 7.46%, HT 7.74% vs HC 0.870%; IA-2A: GD 4.88%, HT 3.59% vs HC 0%; All P < 0.05) but lower than that of T1DM subjects with AITD (ZnT8A: 42.6%; IA-2A: 44.4%; GADA: 74.1%; all P < 0.0001).
Conclusions
An increased prevalence of ZnT8A as well as GADA and IA-2A was found in both GD and HT patients, indicating that there is a potential link between thyroid autoimmunity and islet autoimmunity.
2nd Department of Internal Medicine, University Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University in Prague, Srobarova, Prague, Czech Republic
Search for other papers by T Grimmichova in
Google Scholar
PubMed
Diabetes Centre, Institute for Clinical and Experimental Medicine (IKEM), Videnska, Prague, Czech Republic
Search for other papers by M Haluzik in
Google Scholar
PubMed
Search for other papers by K Vondra in
Google Scholar
PubMed
Search for other papers by P Matucha in
Google Scholar
PubMed
Search for other papers by M Hill in
Google Scholar
PubMed
Objective
Patients with type 2 diabetes (T2DM) generally experience a higher incidence of cancer. However, the association between T2DM and thyroid cancer is inconclusive.
Methods
Case-control prospective study, where 722 patients were screened for T2DM and prediabetes (PDM) and underwent thyroid ultrasound and biochemical tests. The patients were assigned to groups of PDM (n = 55), T2DM (n = 79) or a non-diabetes group (NDM) (n = 588). Fine-needle aspiration biopsy was carried out in 263 patients. Histological examinations were done for 109 patients after surgery, with findings of 52 benign (BS) and 57 malignant tumors (MS).
Results
Thirty-three percent of patients with T2DM and especially PDM were newly diagnosed by our screening: 6.5% with T2DM and 72% with PDM, respectively. The percentage of thyroid cancers did not significantly differ between the groups (χ2 test = 0.461; P = 0.794). Relevant positive thyroid predictors for T2DM (t-statistic = 25.87; P < 0.01) and PDM (21.69; P < 0.01) contrary to NDM (−26.9; P < 0.01) were thyroid volume (4.79; P < 0.01), thyroid nodule volume (3.25; P < 0.01) and multinodular thyroid gland (4.83; P < 0.01), while negative relevant predictors included the occurrence of autoimmune thyroid disease (AITD) (−2.01; P < 0.05).
Conclusion
In general, we did not observe an increased risk for thyroid cancer in the diabetic and prediabetic groups in comparison to controls, in spite of well-established increased risk for other malignancies. Structural and benign changes such as larger and multinodular thyroid glands, in comparison to autoimmune thyroid disease, are present more often in diabetics.
Center for Primary Health Care Research, Lund University, Malmö, Sweden
GeneWerk GmbH, Heidelberg, Germany
Search for other papers by Hauke Thomsen in
Google Scholar
PubMed
Search for other papers by Xinjun Li in
Google Scholar
PubMed
Departments of Family Medicine and Community Health, Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Shimane, Japan
Search for other papers by Kristina Sundquist in
Google Scholar
PubMed
Departments of Family Medicine and Community Health, Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Shimane, Japan
Search for other papers by Jan Sundquist in
Google Scholar
PubMed
Center for Primary Health Care Research, Lund University, Malmö, Sweden
Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
Division of Pediatric Neurooncology, German Cancer Research Centre (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
Search for other papers by Asta Försti in
Google Scholar
PubMed
Center for Primary Health Care Research, Lund University, Malmö, Sweden
Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czech Republic
Search for other papers by Kari Hemminki in
Google Scholar
PubMed
Design
Addison’s disease (AD) is a rare autoimmune disease (AID) of the adrenal cortex, present as an isolated AD or part of autoimmune polyendocrine syndromes (APSs) 1 and 2. Although AD patients present with a number of AID co-morbidities, population-based family studies are scarce, and we aimed to carry out an unbiased study on AD and related AIDs.
Methods
We collected data on patients diagnosed with AIDs in Swedish hospitals and calculated standardized incidence ratios (SIRs) in families for concordant AD and for other AIDs, the latter as discordant relative risks.
Results
The number of AD patients was 2852, which accounted for 0.4% of all hospitalized AIDs. A total of 62 persons (3.6%) were diagnosed with familial AD. The SIR for siblings was remarkably high, reaching 909 for singleton siblings diagnosed before age 10 years. It was 32 in those diagnosed past age 29 years and the risk for twins was 323. SIR was 9.44 for offspring of affected parents. AD was associated with 11 other AIDs, including thyroid AIDs and type 1 diabetes and some rarer AIDs such as Guillain–Barre syndrome, myasthenia gravis, polymyalgia rheumatica and Sjögren’s syndrome.
Conclusions
The familial risk for AD was very high implicating genetic etiology, which for juvenile siblings may be ascribed to APS-1. The adult part of sibling risk was probably contributed by recessive polygenic inheritance. AD was associated with many common AIDs; some of these were known co-morbidities in AD patients while some other appeared to more specific for a familial setting.
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Guangdong Geriatric Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
Search for other papers by Qinglei Yin in
Google Scholar
PubMed
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Zhou Jin in
Google Scholar
PubMed
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Yulin Zhou in
Google Scholar
PubMed
Reproductive Medicine Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
Search for other papers by Dalong Song in
Google Scholar
PubMed
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Chenyang Fu in
Google Scholar
PubMed
Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
Search for other papers by FengJiao Huang in
Google Scholar
PubMed
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Search for other papers by Shu Wang in
Google Scholar
PubMed
Graves’ disease (GD) is a common autoimmune disease that affects the thyroid gland. As a new class of modulators of gene expression, long noncoding RNAs (lncRNAs) have been reported to play a vital role in immune functions and in the development of autoimmunity and autoimmune disease. The aim of this study is to identify lncRNAs in CD4+ T cells as potential biomarkers of GD. lncRNA and mRNA microarrays were performed to identify differentially expressed lncRNAs and mRNAs in GD CD4+ T cells compared with healthy control CD4+ T cells. Quantitative PCR (qPCR) was used to validate the results, and correlation analysis was used to analyze the relationship between these aberrantly expressed lncRNAs and clinical parameters. The microarray identified 164 lncRNAs and 93 mRNAs in GD CD4+ T cells differentially expressed compared to healthy control CD4+ T cells (fold change >2.0 and a P < 0.05). Further analysis consistently showed that the expression of HMlincRNA1474 (P < 0.01) and TCONS_00012608 (P < 0.01) was suppressed, while the expression of AK021954 (P < 0.01) and AB075506 (P < 0.01) was upregulated from initial GD patients. In addition, their expression levels were recovered in euthyroid GD patients and GD patients in remission. Moreover, these four aberrantly expressed lncRNAs were correlated with GD clinical parameters. Moreover, the areas under the ROC curve were 0.8046, 0.7579, 0.8115 for AK021954, AB075506, HMlincRNA1474, respectively. The present work revealed that differentially expressed lncRNAs were associated with GD, which might serve as novel biomarkers of GD and potential targets for GD treatment.
School of Nursing, Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham, UK
Search for other papers by Jane Fletcher in
Google Scholar
PubMed
Search for other papers by Emma L Bishop in
Google Scholar
PubMed
Search for other papers by Stephanie R Harrison in
Google Scholar
PubMed
Search for other papers by Amelia Swift in
Google Scholar
PubMed
Search for other papers by Sheldon C Cooper in
Google Scholar
PubMed
Search for other papers by Sarah K Dimeloe in
Google Scholar
PubMed
Search for other papers by Karim Raza in
Google Scholar
PubMed
Search for other papers by Martin Hewison in
Google Scholar
PubMed
Vitamin D has well-documented effects on calcium homeostasis and bone metabolism but recent studies suggest a much broader role for this secosteroid in human health. Key components of the vitamin D system, notably the vitamin D receptor (VDR) and the vitamin D-activating enzyme (1α-hydroxylase), are present in a wide array of tissues, notably macrophages, dendritic cells and T lymphocytes (T cells) from the immune system. Thus, serum 25-hydroxyvitamin D (25D) can be converted to hormonal 1,25-dihydroxyvitamin D (1,25D) within immune cells, and then interact with VDR and promote transcriptional and epigenomic responses in the same or neighbouring cells. These intracrine and paracrine effects of 1,25D have been shown to drive antibacterial or antiviral innate responses, as well as to attenuate inflammatory T cell adaptive immunity. Beyond these mechanistic observations, association studies have reported the correlation between low serum 25D levels and the risk and severity of human immune disorders including autoimmune diseases such as inflammatory bowel disease, multiple sclerosis, type 1 diabetes and rheumatoid arthritis. The proposed explanation for this is that decreased availability of 25D compromises immune cell synthesis of 1,25D leading to impaired innate immunity and over-exuberant inflammatory adaptive immunity. The aim of the current review is to explore the mechanistic basis for immunomodulatory effects of 25D and 1,25D in greater detail with specific emphasis on how vitamin D-deficiency (low serum levels of 25D) may lead to dysregulation of macrophage, dendritic cell and T cell function and increase the risk of inflammatory autoimmune disease.
Search for other papers by Karim Gariani in
Google Scholar
PubMed
Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
Search for other papers by François R Jornayvaz in
Google Scholar
PubMed
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. NAFLD encompasses a whole spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. The latter can lead to hepatocellular carcinoma. Furthermore, NASH is the most rapidly increasing indication for liver transplantation in western countries and therefore represents a global health issue. The pathophysiology of NASH is complex and includes multiple parallel hits. NASH is notably characterized by steatosis as well as evidence of hepatocyte injury and inflammation, with or without fibrosis. NASH is frequently associated with type 2 diabetes and conditions associated with insulin resistance. Moreover, NASH may also be found in many other endocrine diseases such as polycystic ovary syndrome, hypothyroidism, male hypogonadism, growth hormone deficiency or glucocorticoid excess, for example. In this review, we will discuss the pathophysiology of NASH associated with different endocrinopathies.
Search for other papers by Nese Cinar in
Google Scholar
PubMed
Search for other papers by Alper Gurlek in
Google Scholar
PubMed
Adipose tissue secretes a variety of active biological substances, called adipocytokines, that act in an autocrine, paracrine, and endocrine manner. They have roles in appetite control, thermogenesis, and thyroid and reproductive functions. All these molecules may lead to local and generalized inflammation, mediating obesity-associated vascular disorders including hypertension, diabetes, atherosclerosis, and insulin resistance. Thyroid dysfunction is associated with changes in body weight, thermogenesis, and energy expenditure. The connections between cardiovascular risk factors such as dyslipidemia, impaired glucose tolerance, insulin resistance, atherosclerosis, and thyroid dysfunction have been reported in several studies. The adipocytokines serve as causative or protective factors in the development of these disorders in the states of thyroid dysfunction. Abnormal levels of adipocytokines (adiponectin (ADP), leptin, resistin, vaspin, and visfatin) in hypo- and hyperthyroidism have been reported with controversial results. This review aims to update the implication of novel adipokines ADP, vaspin, and visfatin in thyroid dysfunction.