Search Results
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Magnus Kjellman in
Google Scholar
PubMed
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
Search for other papers by Jan Calissendorff in
Google Scholar
PubMed
Background
With the increasing access to imaging more pheochromocytomas are diagnosed in the workup of adrenal incidentalomas. This may have changed the occurrence of the classic presentation with hypertension and the classic triad (headaches, sweating and palpitation).
Methods
We reviewed 94 consecutive cases of pheochromocytomas. Two cases of ectopic ACTH-syndrome were subsequently excluded.
Results
Of the 92 cases included 64% had presented as an incidentaloma, 32% as a suspected pheochromocytoma and 4% had been screened because of previously diagnosed MEN2A. Those screened were youngest while those with incidentalomas were oldest. The females were more common in the incidentaloma and the screening groups, and males in the suspected pheochromocytoma group. Measurements of noradrenaline/normetanephrine levels were highest in the suspected pheocromocytoma group and lowest in the screening group. Hypertension was present in 63% of the incidentalomas, 79% of suspected pheochromocytomas and in none of the screening group. Paroxysmal symptoms were present in almost all with suspected pheochromocytoma while only in half of the other groups. The suspected pheocromocytoma group had most symptoms and the screening group least. The classic triad was present in 14% of the incidentalomas, in 28% of the suspected and in none of the screening group, while no symptoms at all was present in 12%, 0% and 25%, respectively. Pheochromocytoma crisis occurred in 5%. There was a positive correlation between tumor size vs hormone levels, and catecholamine levels vs blood pressure.
Conclusion
Clinicians need to be aware of the modern presentation of pheochromocytomas since early identification can be life-saving.
Institute of Clinical Medicine, University of Oslo, Oslo, Norway
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
Search for other papers by Ivar Følling in
Google Scholar
PubMed
Search for other papers by Anna B Wennerstrøm in
Google Scholar
PubMed
Search for other papers by Tor J Eide in
Google Scholar
PubMed
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
Search for other papers by Hilde Loge Nilsen in
Google Scholar
PubMed
Introduction
Phaeochromocytomas are tumours originating in the medulla of the adrenal gland. They produce catecholamines, and some tumours also produce ectopic hormones. Two types of glucose imbalances occur in phaeochromocytoma patients, hyperglycaemia and hypoglycaemic attacks. Therefore, we tested whether insulin transcript (INS), insulin, and a hybrid read-through transcript between exons from insulin and insulin-like growth factor 2 (INS-IGF2) were expressed in phaeochromocytomas.
Methods
We measured the expression of insulin using immunohistochemistry. The expression of INS-IGF2 was determined by qRT-PCR in formalin-fixed and paraffin-embedded tissue from 20 phaeochromocytomas. The expression of INS and INS-IGF2 transcriptswas also analysed in 182 phaeochromocytomas and paragangliomas using publicly available datasets in The Cancer Genome Atlas (TCGA) Database.
Results
Of 20 phaeochromocytomas, 16 stained positive for insulin. The distribution of positive cells was mostly scattered, with some focal expression indicating clonal expansion. Nineteen tumours expressed high levels of INS and INS-IGF2 transcripts. The expression of the two transcripts corresponded closely. In the TCGA dataset, phaeochromocytoma expresses higher levels of INS and INS-IGF2 transcripts compared to the normal non-tumour adrenal glands. Thus, the expression of INS and INS-IGF2 seems to be a general phenomenon in phaeochromocytoma.
Conclusion
Most phaeochromocytomas contain cells that overexpress INS and INS-IGF2 transcripts. Most tumours also display heterogeneous expression of polypeptides immunoreactive to monoclonal anti-insulin antibodies. Clinically this may relate to both hyperglycaemia and hypoglycaemic attacks seen in patients with phaeochromocytoma as well as autocrine tumour growth.
Search for other papers by Ailsa Maria Main in
Google Scholar
PubMed
Search for other papers by Maria Rossing in
Google Scholar
PubMed
Search for other papers by Line Borgwardt in
Google Scholar
PubMed
Search for other papers by Birgitte Grønkær Toft in
Google Scholar
PubMed
Search for other papers by Åse Krogh Rasmussen in
Google Scholar
PubMed
Search for other papers by Ulla Feldt-Rasmussen in
Google Scholar
PubMed
Phaeochromocytomas and paragangliomas (PPGLs) are tumours of the adrenal medulla and extra-adrenal sympathetic nervous system which often secrete catecholamines. Variants of the SDHX (SDHA, -AF2, -B, -C, -D) genes are a frequent cause of familial PPGLs. In this study from a single tertiary centre, we aimed to characterise the genotype–phenotype associations in patients diagnosed with germline variants in SDHX genes. We also assessed whether systematic screening of family members resulted in earlier detection of tumours. The study cohort comprised all individuals (n = 59) diagnosed with a rare variant in SDHX during a 13-year period. Patient- and pathology records were checked for clinical characteristics and histopathological findings. We found distinct differences in the clinical and histopathological characteristics between genetic variants in SDHB. We identified two SDHB variants with distinct phenotypical patterns. Family screening for SDHB variants resulted in earlier detection of tumours in two families. Patients with SDHA, SDHC and SDHD variants also had malignant phenotypes, underlining the necessity for a broad genetic screening of the proband. Our study corroborates previous findings of poor prognostic markers and found that the genetic variants and clinical phenotype are linked and, therefore, useful in the decision of clinical follow-up. Regular tumour screening of carriers of pathogenic variants may lead to an earlier diagnosis and expected better prognosis. The development of a combined algorithm with clinical, genetic, morphological, and biochemical factors may be the future for improved clinical risk stratification, forming a basis for larger multi-centre follow up studies.
Search for other papers by Hanna F Nowotny in
Google Scholar
PubMed
Search for other papers by Jillian Bryce in
Google Scholar
PubMed
Search for other papers by Salma R Ali in
Google Scholar
PubMed
Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
Search for other papers by Roberta Giordano in
Google Scholar
PubMed
Search for other papers by Federico Baronio in
Google Scholar
PubMed
Search for other papers by Irina Chifu in
Google Scholar
PubMed
Search for other papers by Lea Tschaidse in
Google Scholar
PubMed
Search for other papers by Martine Cools in
Google Scholar
PubMed
Search for other papers by Erica LT van den Akker in
Google Scholar
PubMed
Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
Search for other papers by Henrik Falhammar in
Google Scholar
PubMed
Search for other papers by Natasha M Appelman-Dijkstra in
Google Scholar
PubMed
Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan Italy
Search for other papers by Luca Persani in
Google Scholar
PubMed
Search for other papers by Guglielmo Beccuti in
Google Scholar
PubMed
Search for other papers by Ian L Ross in
Google Scholar
PubMed
Search for other papers by Simona Grozinsky-Glasberg in
Google Scholar
PubMed
Search for other papers by Alberto M Pereira in
Google Scholar
PubMed
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Department of Medicine, Karolinska Institutet, Stockholm, Sweden
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Search for other papers by Stefanie Hahner in
Google Scholar
PubMed
Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
Developmental Endocrinology Research Group, University of Glasgow, Glasgow, United Kingdom
Search for other papers by S Faisal Ahmed in
Google Scholar
PubMed
Search for other papers by Nicole Reisch in
Google Scholar
PubMed
Background
Information on clinical outcomes of coronavirus disease 19 (COVID-19) infection in patients with adrenal disorders is scarce.
Methods
A collaboration between the European Society of Endocrinology (ESE) Rare Disease Committee and European Reference Network on Rare Endocrine Conditions via the European Registries for Rare Endocrine Conditions allowed the collection of data on 64 cases (57 adrenal insufficiency (AI), 7 Cushing’s syndrome) that had been reported by 12 centres in 8 European countries between January 2020 and December 2021.
Results
Of all 64 patients, 23 were males and 41 females (13 of those children) with a median age of 37 and 51 years. In 45/57 (95%) AI cases, COVID-19 infection was confirmed by testing. Primary insufficiency was present in 45/57 patients; 19 were affected by Addison’s disease, 19 by congenital adrenal hyperplasia and 7 by primary AI (PAI) due to other causes. The most relevant comorbidities were hypertension (12%), obesity (n = 14%) and diabetes mellitus (9%). An increase by a median of 2.0 (IQR 1.4) times the daily replacement dose was reported in 42 (74%) patients. Two patients were administered i.m. injection of 100 mg hydrocortisone, and 11/64 were admitted to the hospital. Two patients had to be transferred to the intensive care unit, one with a fatal outcome. Four patients reported persistent SARS-CoV-2 infection, all others complete remission.
Conclusion
This European multicentre questionnaire is the first to collect data on the outcome of COVID-19 infection in patients with adrenal gland disorders. It suggests good clinical outcomes in case of duly dose adjustments and emphasizes the importance of patient education on sick day rules.
Search for other papers by Rachel Forfar in
Google Scholar
PubMed
Search for other papers by Mashal Hussain in
Google Scholar
PubMed
Search for other papers by Puneet Khurana in
Google Scholar
PubMed
Search for other papers by Jennifer Cook in
Google Scholar
PubMed
Search for other papers by Steve Lewis in
Google Scholar
PubMed
Search for other papers by Dillon Popat in
Google Scholar
PubMed
Search for other papers by David Jackson in
Google Scholar
PubMed
Search for other papers by Ed McIver in
Google Scholar
PubMed
Search for other papers by Jeff Jerman in
Google Scholar
PubMed
Search for other papers by Debra Taylor in
Google Scholar
PubMed
Search for other papers by Adrian JL Clark in
Google Scholar
PubMed
Search for other papers by Li F Chan in
Google Scholar
PubMed
The overproduction of adrenocorticotropic hormone (ACTH), in conditions such as Cushing’s disease and congenital adrenal hyperplasia (CAH), leads to significant morbidity. Current treatment with glucocorticoids does not adequately suppress plasma ACTH, resulting in excess adrenal androgen production. At present, there is no effective medical treatment in clinical use that would directly block the action of ACTH. Such a therapy would be of great clinical value. ACTH acts via a highly selective receptor, the melanocortin-2 receptor (MC2R) associated with its accessory protein MRAP. ACTH is the only known naturally occurring agonist for this receptor. This lack of redundancy and the high degree of ligand specificity suggest that antagonism of this receptor could provide a useful therapeutic strategy in the treatment of conditions of ACTH excess. To this end, we screened an extensive library of low-molecular-weight drug-like compounds for MC2R antagonist activity using a high-throughput homogeneous time-resolved fluorescence cAMP assay in Chinese hamster ovary cells stably co-expressing human MC2R and MRAP. Hits that demonstrated MC2R antagonist properties were counter-screened against the β2 adrenergic receptor and dose–response analysis undertaken. This led to the identification of a highly specific MC2R antagonist capable of antagonising ACTH-induced progesterone release in murine Y-1 adrenal cells and having selectivity for MC2R amongst the human melanocortin receptors. This work provides a foundation for the clinical investigation of small-molecule ACTH antagonists as therapeutic agents and proof of concept for the screening and discovery of such compounds.
Department of Medicine, Haukeland University Hospital, Bergen, Norway
Search for other papers by Grethe Å Ueland in
Google Scholar
PubMed
Search for other papers by Thea Grinde in
Google Scholar
PubMed
Department of Medicine, Haukeland University Hospital, Bergen, Norway
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Search for other papers by Paal Methlie in
Google Scholar
PubMed
Search for other papers by Oskar Kelp in
Google Scholar
PubMed
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Search for other papers by Kristian Løvås in
Google Scholar
PubMed
Department of Medicine, Haukeland University Hospital, Bergen, Norway
K. G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
Search for other papers by Eystein S Husebye in
Google Scholar
PubMed
Objective:
Autonomous cortisol secretion (ACS) is a condition with ACTH-independent cortisol overproduction from adrenal incidentalomas (AI) or adrenal hyperplasia. The hypercortisolism is often mild, and most patients lack typical clinical features of overt Cushing’s syndrome (CS). ACS is not well defined and diagnostic tests lack validation.
Methods:
Retrospective study of 165 patients with AI evaluated clinically and by assay of morning plasma ACTH, late-night saliva cortisol, serum DHEA sulphate (DHEAS), 24-h urine-free cortisol, and cortisol after dexamethasone suppression.
Results:
Patients with AI (n = 165) were diagnosed as non-functioning incidentalomas (NFI) (n = 82) or ACS (n = 83) according to current European guidelines. Late-night saliva cortisol discriminated poorly between NFI and ACS, showing a high rate of false-positive (23/63) and false-negative (38/69) results. The conventional low-dose dexamethasone suppression test (LDDST) did not improve the diagnostic specificity, compared with the 1 mg overnight DST. Receiver operating characteristic curve analysis of DHEAS in the two cohorts demonstrated an area under the curve of 0.76 (P < 0.01) with a sensitivity for ACS of 58% and a specificity of 80% using the recommended cutoff at 1.04 µmol/L (40 µg/dL).
Conclusion:
We here demonstrate in a large retrospective cohort of incidentaloma patients, that neither DHEAS, late-night saliva cortisol nor 24-h urine free cortisol are useful to discriminate between non-functioning adrenal incidentalomas and ACS. The conventional LDDST do not add further information compared with the 1 mg overnight DST. Alternative biomarkers are needed to improve the diagnostic workup of ACS.
Collaborating Center for the WHO Family of International Classifications in China, Beijing, China
Search for other papers by Jingya Zhou in
Google Scholar
PubMed
Collaborating Center for the WHO Family of International Classifications in China, Beijing, China
Search for other papers by Meng Zhang in
Google Scholar
PubMed
Key Laboratory of Endocrinology of National Health Commission of People’s Republic of China, Beijing, China
Search for other papers by Lin Lu in
Google Scholar
PubMed
China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
Search for other papers by Xiaopeng Guo in
Google Scholar
PubMed
China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
Search for other papers by Lu Gao in
Google Scholar
PubMed
Search for other papers by Weigang Yan in
Google Scholar
PubMed
Clinical Epidemiology Unit, International Epidemiology Network, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Search for other papers by Haiyu Pang in
Google Scholar
PubMed
Collaborating Center for the WHO Family of International Classifications in China, Beijing, China
Search for other papers by Yi Wang in
Google Scholar
PubMed
China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
Search for other papers by Bing Xing in
Google Scholar
PubMed
Objective
To investigate the validity of discharge ICD-10 codes in detecting the etiology of endogenous Cushing’s syndrome (CS) in hospitalized patients.
Methods
We evaluated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of CS etiology-related ICD-10 codes or code combinations by comparing hospital discharge administrative data (DAD) with established diagnoses from medical records.
Results
Coding for patients with adrenocortical adenoma (ACA) and those with bilateral macronodular adrenal hyperplasia (BMAH) demonstrated disappointingly low sensitivity at 78.8% (95% CI: 70.1–85.6%) and 83.9% (95% CI: 65.5–93.9%), respectively. BMAH had the lowest PPV of 74.3% (95% CI: 56.4–86.9%). In confirmed ACA patients, the sensitivity for ACA code combinations was higher in patients initially admitted to the Department of Endocrinology before surgery than that in patients directly admitted to the Department of Urology (90.0 vs 73.1%, P = 0.033). The same phenomenon was observed in the PPV for the BMAH code (100.0 vs 60.9%, P = 0.012). Misinterpreted or confusing situations caused by coders (68.1%) and by the omission or denormalized documentation of symptomatic diagnosis by clinicians (26.1%) accounted for the main source of coding errors.
Conclusions
Hospital DAD is an effective data source for evaluating the etiology of CS but not ACA and BMAH. Improving surgeons’ documentation, especially in the delineation of symptomatic and locative diagnoses in discharge abstracts; department- or disease-specific training for coders and more multidisciplinary collaboration are ways to enhance the applicability of administrative data for CS etiologies.
Search for other papers by Alberto Giacinto Ambrogio in
Google Scholar
PubMed
Search for other papers by Massimiliano Andrioli in
Google Scholar
PubMed
Search for other papers by Martina De Martin in
Google Scholar
PubMed
Search for other papers by Francesco Cavagnini in
Google Scholar
PubMed
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
Search for other papers by Francesca Pecori Giraldi in
Google Scholar
PubMed
Recurrence of Cushing’s disease after successful transsphenoidal surgery occurs in some 30% of the patients and the response to desmopressin shortly after surgery has been proposed as a marker for disease recurrence. The aim of the present study was to evaluate the response to desmopressin over time after surgery. We tested 56 patients with Cushing’s disease in remission after transsphenoidal surgery with desmopressin for up to 20 years after surgery. The ACTH and cortisol response to desmopressin over time was evaluated in patients on long-term remission or undergoing relapse; an increase by at least 27 pg/mL in ACTH levels identified responders. The vast majority of patients who underwent successful adenomectomy failed to respond to desmopressin after surgery and this response pattern was maintained over time in patients on long-term remission. Conversely, a response to desmopressin reappeared in patients who subsequently developed a recurrence of Cushing’s disease, even years prior to frank hypercortisolism. It appears therefore that a change in the response pattern to desmopressin proves predictive of recurrence of Cushing’s disease and may indicate which patients require close monitoring.
Search for other papers by Huifei Sophia Zheng in
Google Scholar
PubMed
Search for other papers by Jeffrey G Daniel in
Google Scholar
PubMed
Search for other papers by Julia M Salamat in
Google Scholar
PubMed
Search for other papers by Laci Mackay in
Google Scholar
PubMed
Search for other papers by Chad D Foradori in
Google Scholar
PubMed
Search for other papers by Robert J Kemppainen in
Google Scholar
PubMed
Search for other papers by Satyanarayana R Pondugula in
Google Scholar
PubMed
Search for other papers by Ya-Xiong Tao in
Google Scholar
PubMed
Search for other papers by Chen-Che Jeff Huang in
Google Scholar
PubMed
Glucocorticoids have short- and long-term effects on adrenal gland function and development. RNA sequencing (RNA-seq) was performed to identify early transcriptomic responses to the synthetic glucocorticoid, dexamethasone (Dex), in vitro and in vivo. In total, 1711 genes were differentially expressed in the adrenal glands of the 1-h Dex-treated mice. Among them, only 113 were also considered differentially expressed genes (DEGs) in murine adrenocortical Y-1 cells treated with Dex for 1 h. Gene ontology analysis showed that the upregulated DEGs in the adrenal gland of the 1-h Dex-treated mice were highly associated with the development of neuronal cells, suggesting the adrenal medulla had a rapid response to Dex. Interestingly, only 4.3% of Dex-responsive genes in the Y-1 cell line under Dex treatment for 1 h were differentially expressed under Dex treatment for 24 h. The heatmaps revealed that most early responsive DEGs in Y-1 cells during 1 h of treatment exhibited a transient response. The expression of these genes under treatment for 24 h returned to basal levels similar to that during control treatment. In summary, this research compared the rapid transcriptomic effects of Dex stimulation in vivo and in vitro. Notably, adrenocortical Y-1 cells had a transient early response to Dex treatment. Furthermore, the DEGs had a minimal overlap in the 1-h Dex-treated group in vivo and in vitro.
Search for other papers by Gamze Akkuş in
Google Scholar
PubMed
Search for other papers by Isa Burak Güney in
Google Scholar
PubMed
Search for other papers by Fesih Ok in
Google Scholar
PubMed
Search for other papers by Mehtap Evran in
Google Scholar
PubMed
Search for other papers by Volkan Izol in
Google Scholar
PubMed
Search for other papers by Şeyda Erdoğan in
Google Scholar
PubMed
Search for other papers by Yıldırım Bayazıt in
Google Scholar
PubMed
Search for other papers by Murat Sert in
Google Scholar
PubMed
Search for other papers by Tamer Tetiker in
Google Scholar
PubMed
Background
The management of adrenal incidentaloma is still a challenge with respect to determining its functionality (hormone secretion) and malignancy. In this light, we performed 18F-FDG PET/CT scan to assess the SUVmax values in different adrenal masses including Cushing syndrome, pheochromocytoma, primary hyperaldosteronism and non-functional adrenal adenomas.
Methods
Total 109 (73 F, 36 M) patients with adrenal mass (incidentaloma), mean age of 53.3 ± 10.2 years (range, 24–70) were screened by 18F-FDG PET/CT. Data of 18F-FDG PET/CT imaging of the patients were assessed by the same specialist. Adrenal masses were identified according to the calculated standardized uptake values (SUVs). Clinical examination, 24-h urine cortisol, catecholamine metabolites, 1-mg dexamethasone suppression test, aldosterone/renin ratio and serum electrolytes were analyzed.
Results
Based on the clinical and hormonal evaluations, there were 100 patients with non-functional adrenal mass, four with cortisol-secreting, four with pheochromocytomas and one with aldosterone-secreting adenoma. Mean adrenal mass diameter of 109 patients was 2.1 ± 4.3 (range, 1–6.5 cm). The 18F-FDG PET/CT imaging of the patients revealed that lower SUVmax values were found in non-functional adrenal masses (SUVmax 3.2) when compared to the functional adrenal masses including four with cortisol-secreting adenoma (SUVmax 10.1); four with pheochromcytoma (SUVmax 8.7) and one with aldosterone-secreting adenomas (SUVmax 3.30). Cortisol-secreting (Cushing syndrome) adrenal masses showed the highest SUVmax value (10.1), and a cut-off SUVmax of 4.135 was found with an 84.6% sensitivity and 75.6% specificity cortisol-secreting adrenal adenoma.
Conclusions
Consistent with the similar studies, non-functional adrenal adenomas typically do not show increased FDG uptake and a certain form of functional adenoma could present various FDG uptake in FDG PET/CT. Especially functional adrenal adenomas (cortisol secreting was the highest) showed increased FDG uptake in comparison to the non-functional adrenal masses. Therefore, setting a specific SUVmax value in the differentiation of malignant adrenal lesion from the benign one is risky and further studies, including a high number of functional adrenal mass are needed.