Search Results

You are looking at 31 - 40 of 189 items for

  • Abstract: Atherosclerosis x
  • Abstract: Carotid x
  • Abstract: Circulation x
  • Abstract: Stroke x
  • Abstract: Veins x
  • Abstract: Heart x
  • Abstract: Myocardial x
  • Abstract: Cardio* x
Clear All Modify Search
Ulrik Ø Andersen Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Ulrik Ø Andersen in
Google Scholar
PubMed
Close
,
Dijana Terzic Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Dijana Terzic in
Google Scholar
PubMed
Close
,
Nicolai Jacob Wewer Albrechtsen Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Nicolai Jacob Wewer Albrechtsen in
Google Scholar
PubMed
Close
,
Peter Dall Mark Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Peter Dall Mark in
Google Scholar
PubMed
Close
,
Peter Plomgaard Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Peter Plomgaard in
Google Scholar
PubMed
Close
,
Jens F Rehfeld Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark

Search for other papers by Jens F Rehfeld in
Google Scholar
PubMed
Close
,
Finn Gustafsson Department of Cardiology, Rigshospitalet, Copenhagen, Denmark

Search for other papers by Finn Gustafsson in
Google Scholar
PubMed
Close
, and
Jens P Goetze Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by Jens P Goetze in
Google Scholar
PubMed
Close

Aims

Neprilysin degrades natriuretic peptides in circulation and is also suggested to degrade the gut hormones gastrin and cholecystokinin. Neprilysin inhibition has become a therapeutic strategy and thus a regimen in need of further testing in terms of other hormonal axes besides natriuretic peptides. The aim of this study was to examine whether acute inhibition of neprilysin affects meal-induced responses in gastrin and cholecystokinin concentrations in healthy individuals.

Methods and results

Nine healthy young men were included in an open-labelled, randomized cross-over clinical trial. The participants received a standardized meal (25 g fat, 26 g protein, 42 g carbohydrate) on two separate days with or without a one-time dosage of sacubitril ((194 mg)/valsartan (206 mg)). Blood pressure, heart rate and blood samples were measured and collected during the experiment. Statistical differences between groups were assessed using area under the curve together with an ANOVA with a Bonferroni post hoc test. Sacubitril/valsartan increased the postprandial plasma concentrations of both gastrin and cholecystokinin (80% (AUC0-270 min, P = 0.004) and 60% (AUC0-270 min, P = 0.003), respectively) compared with the control meal. No significant hemodynamic effects were noted (blood pressure, AUC0-270 min, P = 0.86, heart rate, AUC0-270 min, P = 0.96).

Conclusion

Our study demonstrates that sacubitril/valsartan increases the postprandial plasma concentrations of gastrin and cholecystokinin in healthy individuals. The results thus suggest that neprilysin-mediated degradation of gastrin and cholecystokinin is physiologically relevant and may have a role in heart failure patients treated with sacubitril/valsartan.

Open access
Yueyuan Yang Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China

Search for other papers by Yueyuan Yang in
Google Scholar
PubMed
Close
,
Tingting Yu Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China

Search for other papers by Tingting Yu in
Google Scholar
PubMed
Close
,
Zhili Niu Department of Clinical Laboratory, Institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, China

Search for other papers by Zhili Niu in
Google Scholar
PubMed
Close
, and
Ling Gao Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China

Search for other papers by Ling Gao in
Google Scholar
PubMed
Close

Objective

Uridine might be a common link between pathological pathways in diabetes and cardiovascular diseases. This study aimed to investigate the predictive value of plasma uridine for type 2 diabetes (T2D) and T2D with atherosclerosis.

Methods

Individuals with T2D and healthy controls (n = 218) were randomly enrolled in a cross-sectional study. Patients with T2D were divided into two groups based on carotid ultrasound: patients with carotid atherosclerosis (CA) (group DCA) and patients without CA (group D). Plasma uridine was determined using HPLC-MS/MS. Correlation and logistic regression analyses were used to analyze the results.

Results

Fasting and postprandial uridine were significantly increased in patients with T2D compared with healthy individuals. Logistic regression suggested that fasting and postprandial uridine were independent risk factors for T2D. The receiver operating characteristic (ROC) curve showed that fasting uridine had a predictive value on T2D (95% CI, 0.686–0.863, sensitivity 74.3%, specificity 71.8%). Fasting uridine was positively correlated with LDL-c, FBG, and PBG and negatively correlated with fasting C-peptide (CP-0h) and HOMA-IS. The change in postprandial uridine from fasting baseline (Δuridine) was smaller in T2D patients with CA compared with those without (0.80 (0.04–2.46) vs 2.01 (0.49–3.15), P = 0.010). Δuridine was also associated with T2D with CA and negatively correlated with BMI, CP-0h, and HOMA-IR.

Conclusion

Fasting uridine has potential as a predictor of diabetes. Δuridine is closely associated with carotid atherosclerosis in patients with T2D.

Open access
Svjatoslavs Kistkins Pauls Stradiņš Clinical University Hospital, Riga, Latvia

Search for other papers by Svjatoslavs Kistkins in
Google Scholar
PubMed
Close
,
Othmar Moser Division of Exercise Physiology and Metabolism, Institute of Sport Science, University of Bayreuth, Bayreuth, Germany

Search for other papers by Othmar Moser in
Google Scholar
PubMed
Close
,
Vitālijs Ankudovičs Pauls Stradiņš Clinical University Hospital, Riga, Latvia

Search for other papers by Vitālijs Ankudovičs in
Google Scholar
PubMed
Close
,
Dmitrijs Blizņuks Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia

Search for other papers by Dmitrijs Blizņuks in
Google Scholar
PubMed
Close
,
Timurs Mihailovs Institute of Smart Computing Technologies, Riga Technical University, Riga, Latvia

Search for other papers by Timurs Mihailovs in
Google Scholar
PubMed
Close
,
Sergejs Lobanovs Pauls Stradiņš Clinical University Hospital, Riga, Latvia

Search for other papers by Sergejs Lobanovs in
Google Scholar
PubMed
Close
,
Harald Sourij Trials Unit for Interdisciplinary Metabolic Medicine, Division of Endocrinology and Diabetolgoy, Medical University of Graz, Graz, Austria

Search for other papers by Harald Sourij in
Google Scholar
PubMed
Close
,
Andreas F H Pfeiffer Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm, Berlin, Germany

Search for other papers by Andreas F H Pfeiffer in
Google Scholar
PubMed
Close
, and
Valdis Pīrāgs Pauls Stradiņš Clinical University Hospital, Riga, Latvia
Faculty of Medicine, University of Latvia, Riga, Latvia

Search for other papers by Valdis Pīrāgs in
Google Scholar
PubMed
Close

The increasing prevalence of ‘diabesity’, a combination of type 2 diabetes and obesity, poses a significant global health challenge. Unhealthy lifestyle factors, including poor diet, sedentary behaviour, and high stress levels, combined with genetic and epigenetic factors, contribute to the diabesity epidemic. Diabesity leads to various significant complications such as cardiovascular diseases, stroke, and certain cancers. Incretin-based therapies, such as GLP-1 receptor agonists and dual hormone therapies, have shown promising results in improving glycaemic control and inducing weight loss. However, these therapies also come with certain disadvantages, including potential withdrawal effects. This review aims to provide insights into the cross-interactions of insulin, glucagon, and GLP-1, revealing the complex hormonal dynamics during fasting and postprandial states, impacting glucose homeostasis, energy expenditure, and other metabolic functions. Understanding these hormonal interactions may offer novel hypotheses in the development of ‘anti-diabesity’ treatment strategies. The article also explores the question of the antagonism of insulin and glucagon, providing insights into the potential synergy and hormonal overlaps between these hormones.

Open access
Dandan Hu D Hu, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Dandan Hu in
Google Scholar
PubMed
Close
,
Xiangguo Cong X Cong, Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, suzhou, China

Search for other papers by Xiangguo Cong in
Google Scholar
PubMed
Close
,
Beibei Gao B Gao, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Beibei Gao in
Google Scholar
PubMed
Close
,
Ying Wu Y Wu, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Ying Wu in
Google Scholar
PubMed
Close
,
Qiong Shen Q Shen, Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, China

Search for other papers by Qiong Shen in
Google Scholar
PubMed
Close
, and
Lei Chen L Chen, The Affiliated Suzhou Hospital of Nanjing Medical University, 苏州, 2100000, China

Search for other papers by Lei Chen in
Google Scholar
PubMed
Close

Background:

Evidence has demonstrated that visceral fat area (VFA) and subcutaneous fat area (SFA) had different influences on cardiovascular disease (CVD) risk in patients with type 2 diabetes mellitus (T2DM). We aimed to investigate the relationship between the visceral fat area (VFA) to subcutaneous fat area (SFA) ratio (V/S) and carotid atherosclerosis (CAS) in patients with T2DM.

Methods:

From January 2018 to May 2023, 1,838 patients with T2DM admitted to the National Metabolic Management Centre in our hospital were assigned to two groups based on comorbid CAS. Dual bioelectrical impedance analysis was used to measure the VAF and SFA, and the V/S was calculated. Patient characteristics and serum biochemical indices were compared between groups. Factors influencing comorbid CAS were determined, and correlations between V/S and other clinical indices were analyzed.

Results:

The group with comorbid CAS included 858 individuals and 980 without comorbid CAS. Those with comorbid CAS were older and had a longer disease duration, more significant systolic blood pressure, and greater V/S. The proportions of patients with comorbid hypertension increased significantly with the V/S ratio. The V/S ratio positively correlated with triglyceride (TG), low-density lipoprotein cholesterol levels, and waist circumference. According to binary logistic regression analysis, V/S was an independent risk factor for CAS.

Conclusion:

Elevated V/S is an independent risk factor for CAS in patients with T2DM.

Open access
Leyre Lorente-Poch Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Leyre Lorente-Poch in
Google Scholar
PubMed
Close
,
Sílvia Rifà-Terricabras Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Sílvia Rifà-Terricabras in
Google Scholar
PubMed
Close
,
Juan José Sancho Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Juan José Sancho in
Google Scholar
PubMed
Close
,
Danilo Torselli-Valladares Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain

Search for other papers by Danilo Torselli-Valladares in
Google Scholar
PubMed
Close
,
Sofia González-Ortiz Department of Radiology, Hospital del Mar, Barcelona, Spain

Search for other papers by Sofia González-Ortiz in
Google Scholar
PubMed
Close
, and
Antonio Sitges-Serra Endocrine Surgery Unit, Hospital del Mar, Barcelona, Spain
Departament de Cirurgia, Universitat Autònoma de Barcelona, Barcelona, Spain

Search for other papers by Antonio Sitges-Serra in
Google Scholar
PubMed
Close

Objective:

Permanent hypoparathyroidism is an uncommon disease resulting most frequently from neck surgery. It has been associated with visceral calcifications but few studies have specifically this in patients with post-surgical hypoparathyroidism. The aim of the present study was to assess the prevalence of basal ganglia and carotid artery calcifications in patients with long-term post-thyroidectomy hypoparathyroidism compared with a control population.

Design:

Case–control study.

Methods:

A cross-sectional review comparing 29 consecutive patients with permanent postoperative hypoparathyroidism followed-up in a tertiary reference unit for Endocrine Surgery with a contemporary control group of 501 patients who had an emergency brain CT scan. Clinical variables and prevalence of basal ganglia and carotid artery calcifications were recorded.

Results:

From a cohort of 46 patients diagnosed with permanent hypoparathyroidism, 29 were included in the study. The mean duration of disease was 9.2 ± 7 years. Age, diabetes, hypertension, smoking and dyslipidemia were similarly distributed in case and control groups. The prevalence of carotid artery and basal ganglia calcifications was 4 and 20 times more frequent in patients with permanent hypoparathyroidism, respectively. After propensity score matching of the 28 the female patients, 68 controls were matched for age and presence of cardiovascular factors. Cases showed a four-fold prevalence of basal ganglia calcifications, whereas that of carotid calcifications was similar between cases and controls.

Conclusion:

A high prevalence of basal ganglia calcifications was observed in patients with post-surgical permanent hypoparathyroidism. It remains unclear whether carotid artery calcification may also be increased.

Open access
Karoline Winckler Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Karoline Winckler in
Google Scholar
PubMed
Close
,
Lise Tarnow Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Lise Tarnow in
Google Scholar
PubMed
Close
,
Louise Lundby-Christensen Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Louise Lundby-Christensen in
Google Scholar
PubMed
Close
,
Thomas P Almdal Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Thomas P Almdal in
Google Scholar
PubMed
Close
,
Niels Wiinberg Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Niels Wiinberg in
Google Scholar
PubMed
Close
,
Pia Eiken Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology
Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Pia Eiken in
Google Scholar
PubMed
Close
,
Trine W Boesgaard Department of Cardiology, Department of Research, Institute of Clinical Studies, Clinical Research Unit, Department of Paediatrics, Department of Medicine, Department of Physiology and Nuclear Medicine, Institute of Clinical Medicine, Nephrology and Endocrinology

Search for other papers by Trine W Boesgaard in
Google Scholar
PubMed
Close
, and
the CIMT trial group
Search for other papers by the CIMT trial group in
Google Scholar
PubMed
Close

Despite aggressive treatment of cardiovascular disease (CVD) risk factors individuals with type 2 diabetes (T2D) still have increased risk of cardiovascular morbidity and mortality. The primary aim of this study was to examine the cross-sectional association between total (25-hydroxy vitamin D (25(OH)D)) and risk of CVD in patients with T2D. Secondary objective was to examine the association between 25(OH)D and bone health. A Danish cohort of patients with T2D participating in a randomised clinical trial were analysed. In total 415 patients (68% men, age 60±9 years (mean±s.d.), duration of diabetes 12±6 years), including 294 patients (71%) treated with insulin. Carotid intima–media thickness (IMT) and arterial stiffness (carotid artery distensibility coefficient (DC) and Young's elastic modulus (YEM)) were measured by ultrasound scan as indicators of CVD. Bone health was assessed by bone mineral density and trabecular bone score measured by dual energy X-ray absorptiometry. In this cohort, 214 patients (52%) were vitamin D deficient (25(OH)D <50 nmol/l). Carotid IMT was 0.793±0.137 mm, DC was 0.0030±0.001 mmHg, YEM was 2354±1038 mmHg and 13 (3%) of the patients were diagnosed with osteoporosis. A 25(OH)D level was not associated with carotid IMT or arterial stiffness (P>0.3) or bone health (P>0.6) after adjustment for CVD risk factors. In conclusion, 25(OH)D status was not associated with carotid IMT, arterial stiffness or bone health in this cohort of patients with T2D. To explore these associations and the association with other biomarkers further, multicentre studies with large numbers of patients are required.

Open access
Nese Cinar Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, 06100 Sihhiye, Ankara, Turkey

Search for other papers by Nese Cinar in
Google Scholar
PubMed
Close
and
Alper Gurlek Department of Endocrinology and Metabolism, Hacettepe University School of Medicine, 06100 Sihhiye, Ankara, Turkey

Search for other papers by Alper Gurlek in
Google Scholar
PubMed
Close

Adipose tissue secretes a variety of active biological substances, called adipocytokines, that act in an autocrine, paracrine, and endocrine manner. They have roles in appetite control, thermogenesis, and thyroid and reproductive functions. All these molecules may lead to local and generalized inflammation, mediating obesity-associated vascular disorders including hypertension, diabetes, atherosclerosis, and insulin resistance. Thyroid dysfunction is associated with changes in body weight, thermogenesis, and energy expenditure. The connections between cardiovascular risk factors such as dyslipidemia, impaired glucose tolerance, insulin resistance, atherosclerosis, and thyroid dysfunction have been reported in several studies. The adipocytokines serve as causative or protective factors in the development of these disorders in the states of thyroid dysfunction. Abnormal levels of adipocytokines (adiponectin (ADP), leptin, resistin, vaspin, and visfatin) in hypo- and hyperthyroidism have been reported with controversial results. This review aims to update the implication of novel adipokines ADP, vaspin, and visfatin in thyroid dysfunction.

Open access
Ursula M M Costa Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Ursula M M Costa in
Google Scholar
PubMed
Close
,
Carla R P Oliveira Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Carla R P Oliveira in
Google Scholar
PubMed
Close
,
Roberto Salvatori Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Roberto Salvatori in
Google Scholar
PubMed
Close
,
José A S Barreto-Filho Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by José A S Barreto-Filho in
Google Scholar
PubMed
Close
,
Viviane C Campos Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Viviane C Campos in
Google Scholar
PubMed
Close
,
Francielle T Oliveira Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Francielle T Oliveira in
Google Scholar
PubMed
Close
,
Ivina E S Rocha Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Ivina E S Rocha in
Google Scholar
PubMed
Close
,
Joselina L M Oliveira Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Joselina L M Oliveira in
Google Scholar
PubMed
Close
,
Wersley A Silva Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Wersley A Silva in
Google Scholar
PubMed
Close
, and
Manuel H Aguiar-Oliveira Division of Cardiology, Division of Endocrinology, Division of Endocrinology, Federal University of Sergipe, Aracaju, SE 49060-100, Brazil

Search for other papers by Manuel H Aguiar-Oliveira in
Google Scholar
PubMed
Close

Abstract

GH and its principal mediator IGF1 have important effects on metabolic and cardiovascular (CV) status. While acquired GH deficiency (GHD) is often associated with increased CV risk, the consequences of congenital GHD are not known. We have described a large group of patients with isolated GHD (IGHD) due to a homozygous mutation (c.57+1G>A) in the GH releasing hormone receptor gene, and shown that adult GH-naïve individuals have no evidence of clinically evident premature atherosclerosis. To test whether subclinical atherosclerosis is anticipated in untreated IGHD, we performed a cross-sectional study of 25 IGHD and 27 adult controls matched for age and gender. A comprehensive clinical and biochemical panel and coronary artery calcium scores were evaluated by multi-detector tomography. Height, weight, IGF1, homeostasis model assessment of insulin resistance, creatinine and creatininekinase were lower in the IGHD group. Median and interquartile range of calcium scores distribution was similar in the two groups: IGHD 0(0) and control 0(4.9). The vast majority of the calcium scores (20 of 25 IGHD (80%) and 18 of 27 controls (66.6%)) were equal to zero (difference not significant). There was no difference in the calcium scores classification. None of IGHD subjects had minimal calcification, which were present in four controls. Three IGHD and four controls had mild calcification. There were two IGHD individuals with moderate calcification and one control with severe calcification. Our study provides evidence that subjects with congenital isolated lifetime and untreated severe IGHD do not have accelerated subclinical coronary atherosclerosis.

Open access
Angelo Maria Patti Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy

Search for other papers by Angelo Maria Patti in
Google Scholar
PubMed
Close
,
Kalliopi Pafili Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece

Search for other papers by Kalliopi Pafili in
Google Scholar
PubMed
Close
,
Nikolaos Papanas Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupolis, Greece

Search for other papers by Nikolaos Papanas in
Google Scholar
PubMed
Close
, and
Manfredi Rizzo Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy

Search for other papers by Manfredi Rizzo in
Google Scholar
PubMed
Close

Hormonal changes during pregnancy can trigger gestational diabetes (GDM), which is constantly increasing. Its main characteristic is pronounced insulin resistance, but it appears to be a multifactorial process involving several metabolic factors; taken together, the latter leads to silent or clinically evident cardiovascular (CV) events. Insulin resistance and central adiposity are of crucial importance in the development of metabolic syndrome, and they appear to correlate with CV risk factors, including hypertension and atherogenic dyslipidaemia. Hypertensive disease of pregnancy (HDP) is more likely to be an accompanying co-morbidity in pregnancies complicated with GDM. There is still inconsistent evidence as to whether or not co-existent GDM and HDP have a synergistic effects on postpartum risk of cardiometabolic disease; however, this synergism is becoming more accepted since both these conditions may promote endothelial inflammation and early atherosclerosis. Regardless of the presence or absence of the synergism between GDM and HDP, these conditions need to be dealt early enough, in order to reduce CV morbidity and to improve health outcomes for both women and their offspring.

Open access
Yee-Ming M Cheung Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia
Department of Endocrinology, Austin Health, Melbourne, Australia
Division of Endocrinology, Diabetes and Metabolism, Northwell, Great Neck, New York, USA

Search for other papers by Yee-Ming M Cheung in
Google Scholar
PubMed
Close
,
Rudolf Hoermann Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia

Search for other papers by Rudolf Hoermann in
Google Scholar
PubMed
Close
,
Karen Van Department of Endocrinology, Austin Health, Melbourne, Australia

Search for other papers by Karen Van in
Google Scholar
PubMed
Close
,
Damian Wu Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia

Search for other papers by Damian Wu in
Google Scholar
PubMed
Close
,
Jenny Healy Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia

Search for other papers by Jenny Healy in
Google Scholar
PubMed
Close
,
Bella Halim Department of Endocrinology, Austin Health, Melbourne, Australia

Search for other papers by Bella Halim in
Google Scholar
PubMed
Close
,
Manjri Raval Department of Endocrinology, Austin Health, Melbourne, Australia

Search for other papers by Manjri Raval in
Google Scholar
PubMed
Close
,
Maria McGill Department of Radiology, Austin Health, Melbourne, Australia

Search for other papers by Maria McGill in
Google Scholar
PubMed
Close
,
Ali Al-Fiadh Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia
Department of Cardiology, Austin Health, Melbourne Australia

Search for other papers by Ali Al-Fiadh in
Google Scholar
PubMed
Close
,
Michael Chao Olivia Newton-John Cancer Research and Wellness Centre, Austin Health, Melbourne, Australia

Search for other papers by Michael Chao in
Google Scholar
PubMed
Close
,
Shane White Olivia Newton-John Cancer Research and Wellness Centre, Austin Health, Melbourne, Australia

Search for other papers by Shane White in
Google Scholar
PubMed
Close
,
Belinda Yeo Olivia Newton-John Cancer Research and Wellness Centre, Austin Health, Melbourne, Australia
Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia

Search for other papers by Belinda Yeo in
Google Scholar
PubMed
Close
,
Jeffrey D Zajac Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia
Department of Endocrinology, Austin Health, Melbourne, Australia

Search for other papers by Jeffrey D Zajac in
Google Scholar
PubMed
Close
, and
Mathis Grossmann Department of Medicine, The University of Melbourne, Austin Health, Melbourne, Australia
Department of Endocrinology, Austin Health, Melbourne, Australia

Search for other papers by Mathis Grossmann in
Google Scholar
PubMed
Close

Purpose

We previously demonstrated that 12 months of aromatase inhibitor (AI) treatment was not associated with a difference in body composition or other markers of cardiometabolic health when compared to controls. Here we report on the pre-planned extension of the study. The pre-specified primary hypothesis was that AI therapy for 24 months would lead to increased visceral adipose tissue (VAT) area when compared to controls.

Methods

We completed a 12-month extension to our prospective 12-month cohort study of 52 women commencing AI treatment (median age 64.5 years) and 52 women with breast pathology not requiring endocrine therapy (63.5 years). Our primary outcome of interest was VAT area. Secondary and exploratory outcomes included other measures of body composition, hepatic steatosis, measures of atherosclerosis and vascular reactivity. Using mixed models and the addition of a fourth time point, we increased the number of study observations by 79 and were able to rigorously determine the treatment effect.

Results

Among study completers (AI = 39, controls = 40), VAT area was comparable between groups over 24 months, the mean-adjusted difference was −1.54 cm2 (95% CI: −14.9; 11.9, P = 0.79). Both groups demonstrated parallel and continuous increases in VAT area over the observation period that did not diverge or change between groups. No statistically significant difference in our secondary and exploratory outcomes was observed between groups.

Conclusions

While these findings provide reassurance that short-to-medium-term exposure to AI therapy is not associated with metabolically adverse changes when compared to controls, risk evolution should be less focussed on the AI-associated effect and more on the general development of cardiovascular risk over time.

Open access