Search Results
Search for other papers by Adriana J van Ballegooijen in
Google Scholar
PubMed
Department of Health Sciences, Department of Epidemiology and Biostatistics, Department of Public Health, Department of General Practice, Department of Internal Medicine and Cardiovascular Research Institute Maastricht, Department of Internal Medicine, Faculty of Earth and Life Sciences, EMGO Institute for Health and Care Research, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
Search for other papers by Marjolein Visser in
Google Scholar
PubMed
Search for other papers by Marieke B Snijder in
Google Scholar
PubMed
Search for other papers by Jacqueline M Dekker in
Google Scholar
PubMed
Search for other papers by Giel Nijpels in
Google Scholar
PubMed
Search for other papers by Coen D A Stehouwer in
Google Scholar
PubMed
Search for other papers by Michaela Diamant in
Google Scholar
PubMed
Search for other papers by Ingeborg A Brouwer in
Google Scholar
PubMed
Objective
A disturbed vitamin D–parathyroid hormone (PTH)–calcium axis may play a role in the pathogenesis of heart failure. Therefore, we investigated whether lower 25-hydroxyvitamin D (25(OH)D) and higher PTH are cross sectionally and after 8 years of follow-up associated with higher B-type natriuretic peptide (BNP) levels in older men and women.
Design and methods
We measured baseline 25(OH)D, PTH, and BNP in 502 subjects in 2000–2001 in the Hoorn Study, a population-based cohort. Follow-up BNP was available in 2007–2009 in 278 subjects. Subjects were categorized according to season- and sex-specific quartiles of 25(OH)D and PTH at baseline. We studied the association of 25(OH)D and PTH quartiles with BNP using linear regression analyses adjusting for confounders. Analyses were stratified by kidney function estimated glomerular filtration rate (eGFR; ≤60 ml/min per 1.73 m2) because of significant interaction.
Results
At baseline, subjects had a mean age of 69.9±6.6 years, mean 25(OH)D level was 52.2±19.5 nmol/l and mean PTH 6.1±2.4 pmol/l. Cross sectionally, 25(OH)D was associated with BNP in subjects with impaired kidney function (eGFR ≤60 ml/min) only. The association attenuated after adjustment for PTH. PTH was cross sectionally associated with BNP, also in subjects with impaired kidney function only: regression coefficient of highest quartile 9.9 pmol/l (95% confidence interval 2.5, 17.4) with a significant trend across quartiles. Neither 25(OH)D nor PTH was associated with BNP in longitudinal analyses.
Conclusion
This study showed overall no strong association between 25(OH)D and BNP. However, PTH was associated with BNP in subjects with impaired kidney function and may point to a potential role in myocardial function.
Search for other papers by Tsuneo Ogawa in
Google Scholar
PubMed
Search for other papers by Adolfo J de Bold in
Google Scholar
PubMed
The concept of the heart as an endocrine organ arises from the observation that the atrial cardiomyocytes in the mammalian heart display a phenotype that is partly that of endocrine cells. Investigations carried out between 1971 and 1983 characterised, by virtue of its natriuretic properties, a polypeptide referred to atrial natriuretic factor (ANF). Another polypeptide isolated from brain in 1988, brain natriuretic peptide (BNP), was subsequently characterised as a second hormone produced by the mammalian heart atria. These peptides were associated with the maintenance of extracellular fluid volume and blood pressure. Later work demonstrated a plethora of other properties for ANF and BNP, now designated cardiac natriuretic peptides (cNPs). In addition to the cNPs, other polypeptide hormones are expressed in the heart that likely act upon the myocardium in a paracrine or autocrine fashion. These include the C-type natriuretic peptide, adrenomedullin, proadrenomedullin N-terminal peptide and endothelin-1. Expression and secretion of ANF and BNP are increased in various cardiovascular pathologies and their levels in blood are used in the diagnosis and prognosis of cardiovascular disease. In addition, therapeutic uses for these peptides or related substances have been found. In all, the discovery of the endocrine heart provided a shift from the classical functional paradigm of the heart that regarded this organ solely as a blood pump to one that regards this organ as self-regulating its workload humorally and that also influences the function of several other organs that control cardiovascular function.
Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
Search for other papers by Ling Sun in
Google Scholar
PubMed
Search for other papers by Wenwu Zhu in
Google Scholar
PubMed
Search for other papers by Yuan Ji in
Google Scholar
PubMed
Search for other papers by Ailin Zou in
Google Scholar
PubMed
Dalian Medical University, Dalian, Liaoning, China
Search for other papers by Lipeng Mao in
Google Scholar
PubMed
Dalian Medical University, Dalian, Liaoning, China
Search for other papers by Boyu Chi in
Google Scholar
PubMed
Search for other papers by Jianguang Jiang in
Google Scholar
PubMed
Search for other papers by Xuejun Zhou in
Google Scholar
PubMed
Search for other papers by Qingjie Wang in
Google Scholar
PubMed
Search for other papers by Fengxiang Zhang in
Google Scholar
PubMed
Objective
Post-treatment contrast-induced acute kidney injury (CI-AKI) is associated with poor outcomes in patients with acute myocardial infarction (AMI). A lower free triiodothyronine (FT3) level predicts a poor prognosis of AMI patients. This study evaluated the effect of plasma FT3 level in predicting CI-AKI and short-term survival among AMI patients.
Methods
Coronary arteriography or percutaneous coronary intervention was performed in patients with AMI. A 1:3 propensity score (PS) was used to match patients in the CI-AKI group and the non-CI-AKI group.
Results
Of 1480 patients enrolled in the study, 224 (15.1%) patients developed CI-AKI. The FT3 level was lower in CI-AKI patients than in non-CI-AKI patients (3.72 ± 0.88 pmol/L vs 4.01 ± 0.80 pmol/L, P < 0.001). Compared with those at the lowest quartile of FT3, the patients at quartiles 2–4 had a higher risk of CI-AKI respectively (P for trend = 0.005). The risk of CI-AKI increased by 17.7% as FT3 level decreased by one unit after PS-matching analysis (odds ratio: 0.823; 95% CI: 0.685–0.988, P = 0.036). After a median of 31 days of follow-up (interquartile range: 30–35 days), 78 patients died, including 72 cardiogenic deaths and 6 non-cardiogenic deaths, with more deaths in the CI-AKI group than in the non-CI-AKI group (53 vs 25, P < 0.001). Kaplan–Meier survival analysis showed that patients at a lower FT3 quartile achieved a worse survival before and after matching.
Conclusion
Lower FT3 may increase the risk of CI-AKI and 1-month mortality in AMI patients.
Search for other papers by Wang Chengji in
Google Scholar
PubMed
Search for other papers by Fan Xianjin in
Google Scholar
PubMed
Objective
To investigate the biological mechanism of the effect of different intensity exercises on diabetic cardiomyopathy.
Methods
87 raise specific pathogen SPF healthy 6-week-old male Sprague–Dawley rats, fed 6 weeks with high-fat diet for rats were used, and a diabetic model was established by intraperitoneal injection of streptozotocin – randomly selected 43 rats were divided into Diabetic control group (DCG, n = 10), Diabetic exercise group 1 (DEG1, n = 11), Diabetic exercise group 2 (DEG2, n = 11) and Diabetic exercise group 3 (DEG3, n = 11). The rats in DEG1 were forced to run on a motorized treadmill, the exercise load consisted of running at a speed of 10 m/min, the exercise load of the rats in DEG2 were running at a speed of 15 m/min, the exercise load of the rats in DEG3 were running at a speed of 20 m/min, for one hour once a day for 6 weeks. After 6 weeks of exercise intervention, glucose metabolism-related indexes in rats such as blood glucose (FBG), glycosylated serum protein (GSP) and insulin (FINS); cardiac fibrinolytic system parameters such as PAI-1 (plasminogen activator inhibitor 1), Von Willebrand factor (vWF), protein kinase C (PKC) and diacylglycerol (DAG); and serum level of NO, eNOS and T-NOS were measured.
Result
Compared with DCG, fasting blood glucose and GSP were decreased, while insulin sensitivity index and insulin level were increased in all rats of the three exercise groups. FBG decrease was statistically significant (P < 0.01), only GSP decrease was statistically significant (P < 0.05) in DEG1 and DEG2, PAI-1 in three exercise groups were significantly reduced (P < 0.05), plasma vWF levels in the three exercise groups were significantly lower than those in the DCG group (P < 0.01); PKC levels decreased dramatically in the three exercise groups and DAG levels decrease slightly (P < 0.05), but with no significant difference. Compared with DCG, the serum level of NO was significantly higher (P < 0.05), and eNOS level was significantly elevated (P < 0.05). T-NOS elevation was statistically significant in DEG1 (P < 0.05).
Conclusions
Low- and moderate-intensity exercise can better control blood glucose level in diabetic rats; myocardial PAI-1 in DEG1, DEG2 and DEG3 rats decreased significantly (P < 0.05), serum NO increased (P < 0.05) and eNOS increased (P < 0.05) significantly. Therefore, it is inferred that exercise improves the biological mechanism of diabetic cardiomyopathy by affecting the levels of PAI-1 and eNOS, and there is a dependence on intensity.
Search for other papers by Hugo R Ramos in
Google Scholar
PubMed
Department of Internal Medicine, Section of Metabolic Vascular Medicine, Division of Diabetes and Nutritional Sciences, Cardiovascular Endocrinology Laboratory, Faculty of Medicine, Hospital de Urgencias, National University of Córdoba, X5000 Córdoba, Argentina
Search for other papers by Andreas L Birkenfeld in
Google Scholar
PubMed
Search for other papers by Adolfo J de Bold in
Google Scholar
PubMed
Since their discovery in 1981, the cardiac natriuretic peptides (cNP) atrial natriuretic peptide (also referred to as atrial natriuretic factor) and brain natriuretic peptide have been well characterised in terms of their renal and cardiovascular actions. In addition, it has been shown that cNP plasma levels are strong predictors of cardiovascular events and mortality in populations with no apparent heart disease as well as in patients with established cardiac pathology. cNP secretion from the heart is increased by humoral and mechanical stimuli. The clinical significance of cNP plasma levels has been shown to differ in obese and non-obese subjects. Recent lines of evidence suggest important metabolic effects of the cNP system, which has been shown to activate lipolysis, enhance lipid oxidation and mitochondrial respiration. Clinically, these properties lead to browning of white adipose tissue and to increased muscular oxidative capacity. In human association studies in patients without heart disease higher cNP concentrations were observed in lean, insulin-sensitive subjects. Highly elevated cNP levels are generally observed in patients with systolic heart failure or high blood pressure, while obese and type-2 diabetics display reduced cNP levels. Together, these observations suggest that the cNP system plays a role in the pathophysiology of metabolic vascular disease. Understanding this role should help define novel principles in the treatment of cardiometabolic disease.
Search for other papers by Thera P Links in
Google Scholar
PubMed
Search for other papers by Trynke van der Boom in
Google Scholar
PubMed
Search for other papers by Wouter T Zandee in
Google Scholar
PubMed
Search for other papers by Joop D Lefrandt in
Google Scholar
PubMed
Thyroid hormone stimulates cardiac inotropy and chronotropy via direct genomic and non-genomic mechanisms. Hyperthyroidism magnifies these effects, resulting in an increase in heart rate, ejection fraction and blood volume. Hyperthyroidism also affects thrombogenesis and this may be linked to a probable tendency toward thrombosis in patients with hyperthyroidism. Patients with hyperthyroidism are therefore at higher risk for atrial fibrillation, heart failure and cardiovascular mortality. Similarly, TSH suppressive therapy for differentiated thyroid cancer is associated with increased cardiovascular risk. In this review, we present the latest insights on the cardiac effects of thyroid suppression therapy for the treatment of thyroid cancer. Finally, we will show new clinical data on how to implement this knowledge into the clinical practice of preventive medicine.
Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
Search for other papers by Signe Frøssing in
Google Scholar
PubMed
Department of Obstetrics & Gynecology, Herlev Gentofte Hospital, Copenhagen, Denmark
Search for other papers by Malin Nylander in
Google Scholar
PubMed
Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
Search for other papers by Caroline Kistorp in
Google Scholar
PubMed
Department of Obstetrics & Gynecology, Herlev Gentofte Hospital, Copenhagen, Denmark
Search for other papers by Sven O Skouby in
Google Scholar
PubMed
Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
Search for other papers by Jens Faber in
Google Scholar
PubMed
Context
Women with polycystic ovary syndrome (PCOS) have an increased risk of cardiovascular disease (CVD), and biomarkers can be used to detect early subclinical CVD. Midregional-pro-adrenomedullin (MR-proADM), midregional-pro-atrial natriuretic peptide (MR-proANP) and copeptin are all associated with CVD and part of the delicate system controlling fluid and hemodynamic homeostasis through vascular tonus and diuresis. The GLP-1 receptor agonist liraglutide, developed for treatment of type 2 diabetes (T2D), improves cardiovascular outcomes in patients with T2D including a decrease in particular MR-proANP.
Objective
To investigate if treatment with liraglutide in women with PCOS reduces levels of the cardiovascular biomarkers MR-proADM, MR-proANP and copeptin.
Methods
Seventy-two overweight women with PCOS were treated with 1.8 mg/day liraglutide or placebo for 26 weeks in a placebo-controlled RCT. Biomarkers, anthropometrics, insulin resistance, body composition (DXA) and visceral fat (MRI) were examined.
Results
Baseline median (IQR) levels were as follows: MR-proADM 0.52 (0.45–0.56) nmol/L, MR-proANP 44.8 (34.6–56.7) pmol/L and copeptin 4.95 (3.50–6.50) pmol/L. Mean percentage differences (95% CI) between liraglutide and placebo group after treatment were as follows: MR-proADM −6% (−11 to 2, P = 0.058), MR-proANP −25% (−37 to −11, P = 0.001) and copeptin +4% (−13 to 25, P = 0.64). Reduction in MR-proANP concentration correlated with both increased heart rate and diastolic blood pressure in the liraglutide group. Multiple regression analyses with adjustment for BMI, free testosterone, insulin resistance, visceral fat, heart rate and eGFR showed reductions in MR-proANP to be independently correlated with an increase in the heart rate.
Conclusion
In an RCT, liraglutide treatment in women with PCOS reduced levels of the cardiovascular risk biomarkers MR-proANP with 25% and MR-proADM with 6% (borderline significance) compared with placebo. The decrease in MR-proANP was independently associated with an increase in the heart rate.
Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
Search for other papers by Alexander V Amram in
Google Scholar
PubMed
Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
Search for other papers by Stephen Cutie in
Google Scholar
PubMed
Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
Search for other papers by Guo N Huang in
Google Scholar
PubMed
Research conducted across phylogeny on cardiac regenerative responses following heart injury implicates endocrine signaling as a pivotal regulator of both cardiomyocyte proliferation and heart regeneration. Three prominently studied endocrine factors are thyroid hormone, vitamin D, and glucocorticoids, which canonically regulate gene expression through their respective nuclear receptors thyroid hormone receptor, vitamin D receptor, and glucocorticoid receptor. The main animal model systems of interest include humans, mice, and zebrafish, which vary in cardiac regenerative responses possibly due to the differential onsets and intensities of endocrine signaling levels throughout their embryonic to postnatal organismal development. Zebrafish and lower vertebrates tend to retain robust cardiac regenerative capacity into adulthood while mice and other higher vertebrates experience greatly diminished cardiac regenerative potential in their initial postnatal period that is sustained throughout adulthood. Here, we review recent progress in understanding how these three endocrine signaling pathways regulate cardiomyocyte proliferation and heart regeneration with a particular focus on the controversial findings that may arise from different assays, cellular-context, age, and species. Further investigating the role of each endocrine nuclear receptor in cardiac regeneration from an evolutionary perspective enables comparative studies between species in hopes of extrapolating the findings to novel therapies for human cardiovascular disease.
Search for other papers by Akinori Sairaku in
Google Scholar
PubMed
Search for other papers by Yukiko Nakano in
Google Scholar
PubMed
Search for other papers by Yuko Uchimura in
Google Scholar
PubMed
Search for other papers by Takehito Tokuyama in
Google Scholar
PubMed
Search for other papers by Hiroshi Kawazoe in
Google Scholar
PubMed
Search for other papers by Yoshikazu Watanabe in
Google Scholar
PubMed
Search for other papers by Hiroya Matsumura in
Google Scholar
PubMed
Search for other papers by Yasuki Kihara in
Google Scholar
PubMed
Background
The impact of subclinical hypothyroidism on the cardiovascular risk is still debated. We aimed to measure the relationship between subclinical hypothyroidism and the left atrial (LA) pressure.
Methods
The LA pressures and thyroid function were measured in consecutive patients undergoing atrial fibrillation (AF) ablation, who did not have any known heart failure, structural heart disease, or overt thyroid disease.
Results
Subclinical hypothyroidism (4.5≤ thyroid-stimulating hormone <19.9 mIU/L) was present in 61 (13.0%) of the 471 patients included. More subclinical hypothyroidism patients than euthyroid patients (55.7% vs 40.2%; P=0.04).’euthyroid patients had persistent or long-standing persistent AF (55.7% vs 40.2%; P = 0.04). The mean LA pressure (10.9 ± 4.7 vs 9.1 ± 4.3 mmHg; P = 0.002) and LA V-wave pressure (17.4 ± 6.5 vs 14.3 ± 5.9 mmHg; P < 0.001) were, respectively, higher in the patients with subclinical hypothyroidism than in the euthyroid patients. After an adjustment for potential confounders, the LA pressures remained significantly higher in the subclinical hypothyroidism patients. A multiple logistic regression model showed that subclinical hypothyroidism was independently associated with a mean LA pressure of >18 mmHg (odds ratio 3.94, 95% CI 1.28 11.2; P = 0.02).
Conclusions
Subclinical hypothyroidism may increase the LA pressure in AF patients.
Search for other papers by Jens P Goetze in
Google Scholar
PubMed
Search for other papers by Linda M Hilsted in
Google Scholar
PubMed
Search for other papers by Jens F Rehfeld in
Google Scholar
PubMed
Search for other papers by Urban Alehagen in
Google Scholar
PubMed
Cardiovascular risk assessment remains difficult in elderly patients. We examined whether chromogranin A (CgA) measurement in plasma may be valuable in assessing risk of death in elderly patients with symptoms of heart failure in a primary care setting. A total of 470 patients (mean age 73 years) were followed for 10 years. For CgA plasma measurement, we used a two-step method including a screening test and a confirmative test with plasma pre-treatment with trypsin. Cox multivariable proportional regression and receiver-operating curve (ROC) analyses were used to assess mortality risk. Assessment of cardiovascular mortality during the first 3 years of observation showed that CgA measurement contained useful information with a hazard ratio (HR) of 5.4 (95% CI 1.7–16.4) (CgA confirm). In a multivariate setting, the corresponding HR was 5.9 (95% CI 1.8–19.1). When adding N-terminal proBNP (NT-proBNP) to the model, CgA confirm still possessed prognostic information (HR: 6.1; 95% CI 1.8–20.7). The result for predicting all-cause mortality displayed the same pattern. ROC analyses in comparison to NT-proBNP to identify patients on top of clinical variables at risk of cardiovascular death within 5 years of follow-up showed significant additive value of CgA confirm measurements compared with NT-proBNP and clinical variables. CgA measurement in the plasma of elderly patients with symptoms of heart failure can identify those at increased risk of short- and long-term mortality.