Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Zena Simmons x
Clear All Modify Search
Melissa Braga Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA

Search for other papers by Melissa Braga in
Google Scholar
PubMed
Close
,
Zena Simmons Department of Health & Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA

Search for other papers by Zena Simmons in
Google Scholar
PubMed
Close
,
Keith C Norris Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA

Search for other papers by Keith C Norris in
Google Scholar
PubMed
Close
,
Monica G Ferrini Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
Department of Health & Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA

Search for other papers by Monica G Ferrini in
Google Scholar
PubMed
Close
, and
Jorge N Artaza Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
Department of Health & Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA

Search for other papers by Jorge N Artaza in
Google Scholar
PubMed
Close

Skeletal muscle wasting is a serious disorder associated with health conditions such as aging, chronic kidney disease and AIDS. Vitamin D is most widely recognized for its regulation of calcium and phosphate homeostasis in relation to bone development and maintenance. Recently, vitamin D supplementation has been shown to improve muscle performance and reduce the risk of falls in vitamin D deficient older adults. However, little is known of the underlying molecular mechanism(s) or the role it plays in myogenic differentiation. We examined the effect of 1,25-D3 on myogenic cell differentiation in skeletal muscle derived stem cells. Primary cultures of skeletal muscle satellite cells were isolated from the tibialis anterior, soleus and gastrocnemius muscles of 8-week-old C57/BL6 male mice and then treated with 1,25-D3. The efficiency of satellite cells isolation determined by PAX7+ cells was 81%, and they expressed VDR. Incubation of satellite cells with 1,25-D3 induces increased expression of: (i) MYOD, (ii) MYOG, (iii) MYC2, (iv) skeletal muscle fast troponin I and T, (v) MYH1, (vi) IGF1 and 2, (vii) FGF1 and 2, (viii) BMP4, (ix) MMP9 and (x) FST. It also promotes myotube formation and decreases the expression of MSTN. In conclusion, 1,25-D3 promoted a robust myogenic effect on satellite cells responsible for the regeneration of muscle after injury or muscle waste. This study provides a mechanistic justification for vitamin D supplementation in conditions characterized by loss of muscle mass and also in vitamin D deficient older adults with reduced muscle mass and strength, and increased risk of falls.

Open access