Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Yvonne Lundberg Giwercman x
Clear All Modify Search
Eleftherios E Deiktakis Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece

Search for other papers by Eleftherios E Deiktakis in
Google Scholar
PubMed
Close
,
Eleftheria Ieronymaki Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece

Search for other papers by Eleftheria Ieronymaki in
Google Scholar
PubMed
Close
,
Peter Zarén Department of Translational Medicine, Lund University, Malmö, Sweden

Search for other papers by Peter Zarén in
Google Scholar
PubMed
Close
,
Agnes Hagsund Department of Translational Medicine, Lund University, Malmö, Sweden

Search for other papers by Agnes Hagsund in
Google Scholar
PubMed
Close
,
Elin Wirestrand Department of Translational Medicine, Lund University, Malmö, Sweden

Search for other papers by Elin Wirestrand in
Google Scholar
PubMed
Close
,
Johan Malm Department of Translational Medicine, Lund University, Malmö, Sweden

Search for other papers by Johan Malm in
Google Scholar
PubMed
Close
,
Christos Tsatsanis Laboratory of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece

Search for other papers by Christos Tsatsanis in
Google Scholar
PubMed
Close
,
Ilpo T Huhtaniemi Department of Translational Medicine, Lund University, Malmö, Sweden
Imperial College London, Institute of Reproductive and Developmental Biology, London, UK

Search for other papers by Ilpo T Huhtaniemi in
Google Scholar
PubMed
Close
,
Aleksander Giwercman Department of Translational Medicine, Lund University, Malmö, Sweden
Malmö University Hospital, Reproductive Medicine Center, Malmö, Sweden

Search for other papers by Aleksander Giwercman in
Google Scholar
PubMed
Close
, and
Yvonne Lundberg Giwercman Department of Translational Medicine, Lund University, Malmö, Sweden

Search for other papers by Yvonne Lundberg Giwercman in
Google Scholar
PubMed
Close

Objective

During androgen ablation in prostate cancer by the standard gonadotropin-releasing hormone (GnRH) agonist treatment, only luteinizing hormone (LH) is permanently suppressed while circulating follicle-stimulating hormone (FSH) rebounds. We explored direct prostatic effects of add-back FSH, after androgen ablation with GnRH antagonist, permanently suppressing both gonadotropins.

Methods

The effects of recombinant human (rFSH) were examined in mice treated with vehicle (controls), GnRH antagonist degarelix (dgx), dgx + rFSH, dgx + flutamide, or dgx + rFSH + flutamide for 4 weeks. Prostates and testes size and expression of prostate-specific and/or androgen-responsive genes were measured. Additionally, 33 young men underwent dgx-treatment. Seventeen were supplemented with rFSH (weeks 1–5), and all with testosterone (weeks 4–5). Testosterone, gondotropins, prostate-specific antigen (PSA), and inhibin B were measured.

Results

In dgx and dgx + flutamide treated mice, prostate weight/body weight was 91% lower than in controls, but 41 and 11%, respectively, was regained by rFSH treatment (P = 0.02). The levels of seminal vesicle secretion 6, Pbsn, Nkx3.1, beta-microseminoprotein, and inhibin b were elevated in dgx + rFSH-treated animals compared with only dgx treated (all P < 0.05). In men, serum inhibin B rose after dgx treatment but was subsequently suppressed by testosterone. rFSH add-back had no effect on PSA levels.

Conclusions

These data provide novel evidence for the direct effects of FSH on prostate size and gene expression in chemically castrated mice. However, in chemically castrated men, FSH had no effect on PSA production. Whether FSH effects on the prostate in humans also require suppression of the residual adrenal-derived androgens and/or a longer period of rFSH stimulation, remains to be explored.

Open access