Search Results
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Search for other papers by Felix Haglund in
Google Scholar
PubMed
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Search for other papers by Gustaf Rosin in
Google Scholar
PubMed
Search for other papers by Inga-Lena Nilsson in
Google Scholar
PubMed
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Search for other papers by C Christofer Juhlin in
Google Scholar
PubMed
Search for other papers by Ylva Pernow in
Google Scholar
PubMed
Search for other papers by Sophie Norenstedt in
Google Scholar
PubMed
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Search for other papers by Andrii Dinets in
Google Scholar
PubMed
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Search for other papers by Catharina Larsson in
Google Scholar
PubMed
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Search for other papers by Johan Hartman in
Google Scholar
PubMed
Department of Oncology–Pathology, Cancer Centre Karolinska, Department of Biosciences and Nutrition, Department of Molecular Medicine and Surgery, Department of Surgery #4, Karolinska Institutet, Stockholm, Sweden
Search for other papers by Anders Höög in
Google Scholar
PubMed
Primary hyperparathyroidism (PHPT) is a common endocrinopathy, frequently caused by a parathyroid adenoma, rarely by a parathyroid carcinoma that lacks effective oncological treatment. As the majority of cases are present in postmenopausal women, oestrogen signalling has been implicated in the tumourigenesis. Oestrogen receptor beta 1 (ERB1) and ERB2 have been recently identified in parathyroid adenomas, the former inducing genes coupled to tumour apoptosis. We applied immunohistochemistry and slide digitalisation to quantify nuclear ERB1 and ERB2 in 172 parathyroid adenomas, atypical adenomas and carcinomas, and ten normal parathyroid glands. All the normal parathyroid glands expressed ERB1 and ERB2. The majority of tumours expressed ERB1 (70.6%) at varying intensities, and ERB2 (96.5%) at strong intensities. Parathyroid carcinomas expressed ERB1 in three out of six cases and ERB2 in five out of six cases. The intensity of tumour nuclear ERB1 staining significantly correlated inversely with tumour weight (P=0.011), and patients whose tumours were classified as ERB1-negative had significantly greater tumour weight as well as higher serum calcium (P=0.002) and parathyroid hormone levels (P=0.003). Additionally, tumour nuclear ERB1 was not expressed differentially with respect to sex or age of the patient. Levels of tumour nuclear ERB2 did not correlate with clinical characteristics. In conclusion, decreased ERB1 immunoreactivity is associated with increased tumour weight in parathyroid adenomas. Given the previously reported correlation with tumour-suppressive signalling, selective oestrogen receptor modulation (SERMs) may play a role in the treatment of parathyroid carcinomas. Future studies of SERMs and oestrogen treatment in PHPT should consider tumour weight as a potential factor in pharmacological responsiveness.
Search for other papers by Kristin Godang in
Google Scholar
PubMed
Search for other papers by Karolina Lundstam in
Google Scholar
PubMed
Search for other papers by Charlotte Mollerup in
Google Scholar
PubMed
Search for other papers by Stine Lyngvi Fougner in
Google Scholar
PubMed
Search for other papers by Ylva Pernow in
Google Scholar
PubMed
Search for other papers by Jörgen Nordenström in
Google Scholar
PubMed
Search for other papers by Thord Rosén in
Google Scholar
PubMed
Search for other papers by Svante Jansson in
Google Scholar
PubMed
Search for other papers by Mikael Hellström in
Google Scholar
PubMed
Faculty of Medicine, University of Oslo, Oslo, Norway
Search for other papers by Jens Bollerslev in
Google Scholar
PubMed
Faculty of Medicine, University of Oslo, Oslo, Norway
Search for other papers by Ansgar Heck in
Google Scholar
PubMed
Search for other papers by the SIPH Study Group in
Google Scholar
PubMed
Context
Mild primary hyperparathyroidism has been associated with increased body fat mass and unfavorable cardiovascular risk factors.
Objective
To assess the effect of parathyroidectomy on fat mass, glucose and lipid metabolism.
Design, patients, interventions, main outcome measures
119 patients previously randomized to observation (OBS; n = 58) or parathyroidectomy (PTX; n = 61) within the Scandinavian Investigation of Primary Hyperparathyroidism (SIPH) trial, an open randomized multicenter study, were included. Main outcome measures for this study were the differences in fat mass, markers for lipid and glucose metabolism between OBS and PTX 5 years after randomization.
Results
In the OBS group, total cholesterol (Total-C) decreased from mean 5.9 (±1.1) to 5.6 (±1.0) mmol/L (P = 0.037) and LDL cholesterol (LDL-C) decreased from 3.7 (±1.0) to 3.3 (±0.9) mmol/L (P = 0.010). In the PTX group, the Total-C and LDL-C remained unchanged resulting in a significant between-group difference over time (P = 0.013 and P = 0.026, respectively). This difference was driven by patients who started with lipid-lowering medication during the study period (OBS: 5; PTX: 1). There was an increase in trunk fat mass in the OBS group, but no between-group differences over time. Mean 25(OH) vitamin D increased in the PTX group (P < 0.001), but did not change in the OBS group. No difference in parameters of glucose metabolism was detected.
Conclusion
In mild PHPT, the measured metabolic and cardiovascular risk factors were not modified by PTX. Observation seems safe and cardiovascular risk reduction should not be regarded as a separate indication for parathyroidectomy based on the results from this study.