Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Yan Ren x
Clear All Modify Search
Shuang Wan Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
Department of Endocrinology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China

Search for other papers by Shuang Wan in
Google Scholar
PubMed
Close
,
Chengcheng Zheng Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Chengcheng Zheng in
Google Scholar
PubMed
Close
,
Tao Chen Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Tao Chen in
Google Scholar
PubMed
Close
,
Lu Tan Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Lu Tan in
Google Scholar
PubMed
Close
,
Jia Tang Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Jia Tang in
Google Scholar
PubMed
Close
,
Haoming Tian Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Haoming Tian in
Google Scholar
PubMed
Close
, and
Yan Ren Adrenal Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China

Search for other papers by Yan Ren in
Google Scholar
PubMed
Close

We applied 24-h Holter monitoring to analyze the characteristics of arrhythmias and heart rate variability in Chinese patients with primary aldosteronism (PA) and compared them with age-, sex-, and blood pressure-matched primary hypertension (PH) patients. A total of 216 PA patients and 261 PH patients were enrolled. The nonstudy data were balanced using propensity score matching (PSM), and the risk variables for developing arrhythmias were then analyzed using logistic regression analysis. Before PSM, the proportion of PA patients with combined atrial premature beats and prolonged QT interval was higher than the corresponding proportion in the PH group. After PSM, the PA group had a larger percentage of transient atrial tachycardia and frequent atrial premature beats, and it had higher heart rate variability metrics. The proportion of unilateral PA combined with multiple ventricular premature beats was higher than that of bilateral PA. Older age, grade 3 hypertension, and hypokalemia were independent risk factors for the emergence of arrhythmias in PA patients. PA patients suffer from a greater prevalence of arrhythmias than well-matched PH patients.

Open access
Xun Gong Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Xun Gong in
Google Scholar
PubMed
Close
,
Lili You Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Lili You in
Google Scholar
PubMed
Close
,
Feng Li Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Feng Li in
Google Scholar
PubMed
Close
,
Qingyu Chen Department of Medical Examination Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China

Search for other papers by Qingyu Chen in
Google Scholar
PubMed
Close
,
Chaogang Chen Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China

Search for other papers by Chaogang Chen in
Google Scholar
PubMed
Close
,
Xiaoyun Zhang Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Xiaoyun Zhang in
Google Scholar
PubMed
Close
,
Xiuwei Zhang Department of Endocrinology, Dongguan People’s Hospital, Dongguan, People’s Republic of China

Search for other papers by Xiuwei Zhang in
Google Scholar
PubMed
Close
,
Wenting Xuan Department of Endocrinology, Dongguan People’s Hospital, Dongguan, People’s Republic of China

Search for other papers by Wenting Xuan in
Google Scholar
PubMed
Close
,
Kan Sun Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Kan Sun in
Google Scholar
PubMed
Close
,
Guojuan Lao Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Guojuan Lao in
Google Scholar
PubMed
Close
,
Chuan Wang Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Chuan Wang in
Google Scholar
PubMed
Close
,
Yan Li Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Yan Li in
Google Scholar
PubMed
Close
,
Mingtong Xu Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Mingtong Xu in
Google Scholar
PubMed
Close
,
Meng Ren Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Meng Ren in
Google Scholar
PubMed
Close
, and
Li Yan Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China

Search for other papers by Li Yan in
Google Scholar
PubMed
Close

Objective

Adiponectin is an adipocyte-derived hormone with an important role in glucose metabolism. The present study explored the effect of adiponectin in diverse population groups on pre-diabetes and newly diagnosed diabetes.

Methods

A total of 3300 individuals were enrolled and their data were collected in the analyses dataset from December 2018 to October 2019. Cluster analysis was conducted based on age, BMI, waistline, body fat, systolic blood pressure, triglycerides, and glycosylated hemoglobin 1c. Cluster analysis divided the participants into four groups: a young-healthy group, an elderly-hypertension group, a high glucose–lipid group, and an obese group. Odds ratio (OR) and 95% CIs were calculated using multivariate logistic regression analysis.

Results

Compared with the first quartile of adiponectin, the risk of pre-diabetes of fourth quartile was decreased 61% (aOR = 0.39, 95% CI (0.20–0.73)) in the young-healthy group; and the risk of diabetes of fourth quartile was decreased 85% (aOR = 0.15, 95% CI (0.02–0.67)) in the obese group. There were no significant correlations between the adiponectin level and diabetes/pre-diabetes in the other two groups. Additionally, receiver operating characteristic curve analysis indicated that adiponectin could significantly improve the diagnosis based on models in the young-healthy group (from 0.640 to 0.675) and the obese group (from 0.714 to 0.761).

Conclusions

Increased adiponectin levels were associated with decreased risk of pre-diabetes in the young-healthy population, and with a decreased the risk of diabetes in the obese population. An increased adiponectin level is an independent protective factor for pre-diabetes and diabetes in a specific population in south China.

Open access